Long-Range population dynamics of anatomically defined neocortical networks

  1. Jerry L Chen
  2. Fabian F Voigt
  3. Mitra Javadzadeh
  4. Roland Krueppel
  5. Fritjof Helmchen  Is a corresponding author
  1. Boston University, United States
  2. University of Zurich, Switzerland
  3. Federal Ministry of Education and Research, Germany

Abstract

The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. However, it has not been possible to dissociate direct cortico-cortical interactions from other sources of neuronal correlations by targeting recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We observed coordinated S1-S2 activity that is related to motor behaviors such as goal-directed whisking and licking but is not specific to identified projection neurons. However, feedforward and feedback neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices.

Article and author information

Author details

  1. Jerry L Chen

    Department of Biology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian F Voigt

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mitra Javadzadeh

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Roland Krueppel

    Federal Ministry of Education and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Fritjof Helmchen

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    For correspondence
    helmchen@hifo.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experimental procedures followed the guidelines of the Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in Zurich. Experiments were carried out under the approved licenses 62/2011 and 285/2014.

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,925
    views
  • 1,443
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jerry L Chen
  2. Fabian F Voigt
  3. Mitra Javadzadeh
  4. Roland Krueppel
  5. Fritjof Helmchen
(2016)
Long-Range population dynamics of anatomically defined neocortical networks
eLife 5:e14679.
https://doi.org/10.7554/eLife.14679

Share this article

https://doi.org/10.7554/eLife.14679

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.