Long-Range population dynamics of anatomically defined neocortical networks

  1. Jerry L Chen
  2. Fabian F Voigt
  3. Mitra Javadzadeh
  4. Roland Krueppel
  5. Fritjof Helmchen  Is a corresponding author
  1. Boston University, United States
  2. University of Zurich, Switzerland
  3. Federal Ministry of Education and Research, Germany

Abstract

The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. However, it has not been possible to dissociate direct cortico-cortical interactions from other sources of neuronal correlations by targeting recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We observed coordinated S1-S2 activity that is related to motor behaviors such as goal-directed whisking and licking but is not specific to identified projection neurons. However, feedforward and feedback neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices.

Article and author information

Author details

  1. Jerry L Chen

    Department of Biology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian F Voigt

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mitra Javadzadeh

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Roland Krueppel

    Federal Ministry of Education and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Fritjof Helmchen

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    For correspondence
    helmchen@hifo.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Animal experimentation: Experimental procedures followed the guidelines of the Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in Zurich. Experiments were carried out under the approved licenses 62/2011 and 285/2014.

Version history

  1. Received: January 25, 2016
  2. Accepted: May 21, 2016
  3. Accepted Manuscript published: May 24, 2016 (version 1)
  4. Accepted Manuscript updated: May 25, 2016 (version 2)
  5. Version of Record published: June 17, 2016 (version 3)

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,635
    views
  • 1,414
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jerry L Chen
  2. Fabian F Voigt
  3. Mitra Javadzadeh
  4. Roland Krueppel
  5. Fritjof Helmchen
(2016)
Long-Range population dynamics of anatomically defined neocortical networks
eLife 5:e14679.
https://doi.org/10.7554/eLife.14679

Share this article

https://doi.org/10.7554/eLife.14679

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.