Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain

  1. Shuning He
  2. Marc R Mansour
  3. Mark W Zimmerman
  4. Dong Hyuk Ki
  5. Hillary M Layden
  6. Koshi Akahane
  7. Evisa Gjini
  8. Eric D de Groh
  9. Antonio R Perez-Atayde
  10. Shizhen Zhu
  11. Jonathan A Epstein
  12. A Thomas Look  Is a corresponding author
  1. Harvard Medical School, United States
  2. Perelman School of Medicine at the University of Pennsylvania, United States

Abstract

Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1's role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical 'developmental tumor', NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation.

Article and author information

Author details

  1. Shuning He

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marc R Mansour

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark W Zimmerman

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dong Hyuk Ki

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hillary M Layden

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Koshi Akahane

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Evisa Gjini

    Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric D de Groh

    Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonio R Perez-Atayde

    Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shizhen Zhu

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jonathan A Epstein

    Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. A Thomas Look

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    For correspondence
    thomas_look@dfci.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All zebrafish studies and maintenance of the animals were performed in accordance with Dana-Farber Cancer Institute IACUC-approved protocol (#02-107).

Copyright

© 2016, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,532
    views
  • 580
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuning He
  2. Marc R Mansour
  3. Mark W Zimmerman
  4. Dong Hyuk Ki
  5. Hillary M Layden
  6. Koshi Akahane
  7. Evisa Gjini
  8. Eric D de Groh
  9. Antonio R Perez-Atayde
  10. Shizhen Zhu
  11. Jonathan A Epstein
  12. A Thomas Look
(2016)
Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain
eLife 5:e14713.
https://doi.org/10.7554/eLife.14713

Share this article

https://doi.org/10.7554/eLife.14713