Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain

  1. Shuning He
  2. Marc R Mansour
  3. Mark W Zimmerman
  4. Dong Hyuk Ki
  5. Hillary M Layden
  6. Koshi Akahane
  7. Evisa Gjini
  8. Eric D de Groh
  9. Antonio R Perez-Atayde
  10. Shizhen Zhu
  11. Jonathan A Epstein
  12. A Thomas Look  Is a corresponding author
  1. Harvard Medical School, United States
  2. Perelman School of Medicine at the University of Pennsylvania, United States

Abstract

Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1's role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical 'developmental tumor', NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation.

Article and author information

Author details

  1. Shuning He

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marc R Mansour

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark W Zimmerman

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dong Hyuk Ki

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hillary M Layden

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Koshi Akahane

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Evisa Gjini

    Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric D de Groh

    Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonio R Perez-Atayde

    Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shizhen Zhu

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jonathan A Epstein

    Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. A Thomas Look

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    For correspondence
    thomas_look@dfci.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All zebrafish studies and maintenance of the animals were performed in accordance with Dana-Farber Cancer Institute IACUC-approved protocol (#02-107).

Copyright

© 2016, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,460
    views
  • 576
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuning He
  2. Marc R Mansour
  3. Mark W Zimmerman
  4. Dong Hyuk Ki
  5. Hillary M Layden
  6. Koshi Akahane
  7. Evisa Gjini
  8. Eric D de Groh
  9. Antonio R Perez-Atayde
  10. Shizhen Zhu
  11. Jonathan A Epstein
  12. A Thomas Look
(2016)
Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain
eLife 5:e14713.
https://doi.org/10.7554/eLife.14713

Share this article

https://doi.org/10.7554/eLife.14713

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Cancer Biology
    Anne Fajac, Iva Simeonova ... Franck Toledo
    Research Article

    The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eμ-Myc males compared to Trp53ΔAS/ΔAS Eμ-Myc males, but also compared to Trp53+/+Eμ-Myc and Trp53ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.