Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

  1. Sama F Sleiman
  2. Jeffrey Henry
  3. Rami Al-Haddad
  4. Lauretta El Hayek
  5. Edwina Abou Haidar
  6. Thomas Stringer
  7. Devyani Ulja
  8. Saravanan S Karuppagounder
  9. Edward B Holson
  10. Rajiv R Ratan
  11. Ipe Ninan
  12. Moses V Chao  Is a corresponding author
  1. Lebanese American University, Lebanon
  2. New York University Langone Medical Center, United States
  3. Burke Medical Research Institute, United States
  4. The Broad Institute of MIT and Harvard, United States

Abstract

Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.

Article and author information

Author details

  1. Sama F Sleiman

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  2. Jeffrey Henry

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Rami Al-Haddad

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  4. Lauretta El Hayek

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  5. Edwina Abou Haidar

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  6. Thomas Stringer

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  7. Devyani Ulja

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  8. Saravanan S Karuppagounder

    Burke Medical Research Institute, White Plains, United States
    Competing interests
    No competing interests declared.
  9. Edward B Holson

    Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Rajiv R Ratan

    Burke Medical Research Institute, White Plains, United States
    Competing interests
    No competing interests declared.
  11. Ipe Ninan

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  12. Moses V Chao

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    For correspondence
    moses.chao@med.nyu.edu
    Competing interests
    Moses V Chao, Reviewing editor, eLife.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the New York State Department of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of New York University (Approved Protocol (#140601) All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 8, 2016
  2. Accepted: May 24, 2016
  3. Accepted Manuscript published: June 2, 2016 (version 1)
  4. Version of Record published: June 21, 2016 (version 2)

Copyright

© 2016, Sleiman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 55,819
    views
  • 4,753
    downloads
  • 455
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sama F Sleiman
  2. Jeffrey Henry
  3. Rami Al-Haddad
  4. Lauretta El Hayek
  5. Edwina Abou Haidar
  6. Thomas Stringer
  7. Devyani Ulja
  8. Saravanan S Karuppagounder
  9. Edward B Holson
  10. Rajiv R Ratan
  11. Ipe Ninan
  12. Moses V Chao
(2016)
Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate
eLife 5:e15092.
https://doi.org/10.7554/eLife.15092

Share this article

https://doi.org/10.7554/eLife.15092

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.