Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

  1. Sama F Sleiman
  2. Jeffrey Henry
  3. Rami Al-Haddad
  4. Lauretta El Hayek
  5. Edwina Abou Haidar
  6. Thomas Stringer
  7. Devyani Ulja
  8. Saravanan S Karuppagounder
  9. Edward B Holson
  10. Rajiv R Ratan
  11. Ipe Ninan
  12. Moses V Chao  Is a corresponding author
  1. Lebanese American University, Lebanon
  2. New York University Langone Medical Center, United States
  3. Burke Medical Research Institute, United States
  4. The Broad Institute of MIT and Harvard, United States

Abstract

Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.

Article and author information

Author details

  1. Sama F Sleiman

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  2. Jeffrey Henry

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Rami Al-Haddad

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  4. Lauretta El Hayek

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  5. Edwina Abou Haidar

    Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
    Competing interests
    No competing interests declared.
  6. Thomas Stringer

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  7. Devyani Ulja

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  8. Saravanan S Karuppagounder

    Burke Medical Research Institute, White Plains, United States
    Competing interests
    No competing interests declared.
  9. Edward B Holson

    Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Rajiv R Ratan

    Burke Medical Research Institute, White Plains, United States
    Competing interests
    No competing interests declared.
  11. Ipe Ninan

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  12. Moses V Chao

    Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, United States
    For correspondence
    moses.chao@med.nyu.edu
    Competing interests
    Moses V Chao, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the New York State Department of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of New York University (Approved Protocol (#140601) All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: February 8, 2016
  2. Accepted: May 24, 2016
  3. Accepted Manuscript published: June 2, 2016 (version 1)
  4. Version of Record published: June 21, 2016 (version 2)

Copyright

© 2016, Sleiman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 54,807
    Page views
  • 4,656
    Downloads
  • 421
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sama F Sleiman
  2. Jeffrey Henry
  3. Rami Al-Haddad
  4. Lauretta El Hayek
  5. Edwina Abou Haidar
  6. Thomas Stringer
  7. Devyani Ulja
  8. Saravanan S Karuppagounder
  9. Edward B Holson
  10. Rajiv R Ratan
  11. Ipe Ninan
  12. Moses V Chao
(2016)
Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate
eLife 5:e15092.
https://doi.org/10.7554/eLife.15092

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.