Enhancer regions show high histone H3.3 turnover that changes during differentiation

  1. Aimee M Deaton
  2. Mariluz Gómez-Rodríguez
  3. Jakub Mieczkowski
  4. Michael Y Tolstorukov
  5. Sharmistha Kundu
  6. Ruslan I Sadreyev
  7. Lars ET Jansen
  8. Robert E Kingston  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Instituto Gulbenkian de Ciencia, Portugal
  3. Instituto Gulbenkian de Ciência, Portugal

Abstract

The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation.

Article and author information

Author details

  1. Aimee M Deaton

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariluz Gómez-Rodríguez

    Laboratory for Epigenetic Mechanisms, Instituto Gulbenkian de Ciencia, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Jakub Mieczkowski

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Y Tolstorukov

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sharmistha Kundu

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lars ET Jansen

    Laboratory for Epigenetic Mechanisms, Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert E Kingston

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    kingston@molbio.mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: February 17, 2016
  2. Accepted: June 14, 2016
  3. Accepted Manuscript published: June 15, 2016 (version 1)
  4. Version of Record published: July 28, 2016 (version 2)

Copyright

© 2016, Deaton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,824
    views
  • 1,232
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aimee M Deaton
  2. Mariluz Gómez-Rodríguez
  3. Jakub Mieczkowski
  4. Michael Y Tolstorukov
  5. Sharmistha Kundu
  6. Ruslan I Sadreyev
  7. Lars ET Jansen
  8. Robert E Kingston
(2016)
Enhancer regions show high histone H3.3 turnover that changes during differentiation
eLife 5:e15316.
https://doi.org/10.7554/eLife.15316

Share this article

https://doi.org/10.7554/eLife.15316

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.