A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction

  1. William Thomas Keenan
  2. Alan C Rupp
  3. Rachel A Ross
  4. Preethi Somasundaram
  5. Suja Hiriyanna
  6. Zhijian Wu
  7. Tudor C Badea
  8. Phyllis R Robinson
  9. Bradford B Lowell
  10. Samer S Hattar  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. University of Marlyand, United States
  4. National Institutes of Health, United States
  5. Harvard Medical School, United States

Abstract

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate , but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.

Article and author information

Author details

  1. William Thomas Keenan

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3381-744X
  2. Alan C Rupp

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel A Ross

    Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Preethi Somasundaram

    Department of Biological Sciences, University of Marlyand, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Suja Hiriyanna

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhijian Wu

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tudor C Badea

    National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Phyllis R Robinson

    Department of Biological Sciences, University of Marlyand, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bradford B Lowell

    Division of Endocrinology, Diabetes, and Metabolism, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Samer S Hattar

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    shattar@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-9525

Funding

National Eye Institute (R21)

  • William Thomas Keenan
  • Alan C Rupp
  • Samer S Hattar

National Institute of General Medical Sciences (RO1)

  • William Thomas Keenan
  • Alan C Rupp
  • Samer S Hattar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Constance L Cepko, Howard Hughes Medical Institute, Harvard Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All mice were housed according to guidelines from the Animal Care and Use Committee of Johns Hopkins University (Protocol # MO16A212), and used protocols approved by the JHU animal care and use committee.

Version history

  1. Received: February 19, 2016
  2. Accepted: September 22, 2016
  3. Accepted Manuscript published: September 26, 2016 (version 1)
  4. Accepted Manuscript updated: October 7, 2016 (version 2)
  5. Version of Record published: October 25, 2016 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,651
    views
  • 785
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Thomas Keenan
  2. Alan C Rupp
  3. Rachel A Ross
  4. Preethi Somasundaram
  5. Suja Hiriyanna
  6. Zhijian Wu
  7. Tudor C Badea
  8. Phyllis R Robinson
  9. Bradford B Lowell
  10. Samer S Hattar
(2016)
A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction
eLife 5:e15392.
https://doi.org/10.7554/eLife.15392

Share this article

https://doi.org/10.7554/eLife.15392

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.