N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

  1. Nagaraja Tirumuru
  2. Boxuan Simen Zhao
  3. Wuxun Lu
  4. Zhike Lu
  5. Chuan He  Is a corresponding author
  6. Li Wu  Is a corresponding author
  1. The Ohio State University, United States
  2. The University of Chicago, United States
  3. Institute for Biophysical Dynamics, The University of Chicago, United States
  4. Howard Hughes Medical Institute, The University of Chicago, United States
7 figures and 3 tables

Figures

Figure 1 with 4 supplements
HIV-1 RNA contains m6A modifications and YTHDF1–3 proteins bind to m6A-modified HIV-1 RNA.

(A–B) The distribution of m6A reads from m6A-seq mapped to HIV-1 genome (red line) in HIV-1 infected Jurkat cells (A) or primary CD4+ T-cells (B). Baseline signal from the RNA-seq of input samples …

https://doi.org/10.7554/eLife.15528.003
Figure 1—figure supplement 1
HIV-1 RNA contains m6A modifications.

HEK293 T cells were transfected with a proviral DNA-containing plasmid (pNL4-3). Total RNA was extracted at 48 hr post-transfection and immunoprecipitated with an m6A-specific antibody. Enriched RNA …

https://doi.org/10.7554/eLife.15528.004
Figure 1—figure supplement 2
Quantification of HIV-1 RNA m6A level using liquid chromatography-mass spectrometry.

HIV-1 RNA (250 ng) was isolated from highly purified HIV-1MN virions (total 600 μg of p24 capsid) and subjected to quantitative analysis of the m6A level using LC-MS/MS (n=3 of each sample). The …

https://doi.org/10.7554/eLife.15528.005
Figure 1—figure supplement 3
Distribution of m6A in cellular RNAs and the frequency of m6A motifs in HIV-1-infected cells.

(AB) Pie charts show the distribution of m6A peaks in the 5′ UTR, coding DNA sequence (CDS), 3′ UTR, and noncoding regions of transcripts from uninfected and HIV-1-infected Jurkat T-cells (A) or …

https://doi.org/10.7554/eLife.15528.006
Figure 1—figure supplement 4
Gene ontology (GO) analysis of m6A-modified cellular genes in HIV-1 infected cells.

(A and B) GO terms specific to virus related pathways and corresponding p values, clustered from methylated genes detected in Jurkat cells (A) or primary CD4+ T cells (B) infected with HIV-1. (C and …

https://doi.org/10.7554/eLife.15528.007
YTHDF1–3 proteins negatively regulate post-entry HIV-1 infection in HeLa cells.

(AB) Overexpression of YTHDF1–3 proteins in HeLa cells significantly inhibits HIV-1 infection compared to vector control cells. (A) Overexpression of YTHDF1–3 proteins in HeLa cells was confirmed …

https://doi.org/10.7554/eLife.15528.008
YTHDF1–3 proteins negatively regulate post-entry HIV-1 infection in CD4+ T-cells.

(A) Individual knockdown of endogenous YTHDF1–3 proteins in Jurkat CD4+ T cells was confirmed by immunoblotting. (B) Knockdown of YTHDF1–3 proteins does not affect proliferation of Jurkat cells. …

https://doi.org/10.7554/eLife.15528.009
Figure 4 with 1 supplement
YTHDF1–3 proteins inhibit post-entry HIV-1 infection by blocking viral reverse transcription.

HeLa cells over-expressing or knocking-down (shRNA) individual YTHDF1–3 proteins were infected with HIV-1-Luc/VSV-G at an MOI of 0.5. (A, B and D) Genomic DNA was isolated from the cells 24 hr …

https://doi.org/10.7554/eLife.15528.010
Figure 4—figure supplement 1
YTHDF1–3 proteins negatively regulate HIV-1 gag mRNA expression.

Specific shRNAs or scrambled shRNA vector-treated cells were infected with HIV-1 Luc/VSV-G at an MOI of 0.5. Total RNA was isolated from the cells 24 hr post-infection and HIV-1 gag mRNA levels were …

https://doi.org/10.7554/eLife.15528.011
YTHDF1–3 proteins bind to HIV-1 gRNA in infected cells.

(A) Immunoblotting of YTHDF1–3 proteins in the input and immunoprecipitation (IP) samples from HIV-1-Luc/VSV-G infected HeLa cells. FLAG antibodies were used to immunoprecipitate FLAG-tagged …

https://doi.org/10.7554/eLife.15528.012
The m6A writers and erasers affect HIV-1 Gag expression in virus-producing cells.

(A and B) Individual or combined knockdown of endogenous METTL3 and METTL14 inhibits HIV-1 Gag protein expression. HEK293T cells were transfected with indicated siRNA, and then with an HIV-1 …

https://doi.org/10.7554/eLife.15528.013
Proposed mechanisms and dynamics of m6A modification of HIV-1 RNA in regulating viral infection in cells.

In the nucleus, the m6A writers (METTL3 and METTL14) add the m6A marker to HIV-1 genomic RNA (gRNA) or mRNA, and the m6A erasers (FTO and AlkBH5) remove the m6A modifications of HIV-1 RNA. The m6A …

https://doi.org/10.7554/eLife.15528.014

Tables

Table 1

The shRNA sequences used in this study.

https://doi.org/10.7554/eLife.15528.015
shRNASequences (5’-3’)
Non-specific (vector) controlCCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT
YTHDF1CCGGCCCGAAAGAGTTTGAGTGGAACTCGAGTTCCACTCAAACTCTTTCGGGTTTTTG
YTHDF2CCGGCGGTCCATTAATAACTATAACCTCGAGGTTATAGTTATTAATGGACCGTTTTTG
YTHDF3CCGGGATAAGTGGAAGGGCAAATTTCTCGAGAAATTTGCCCTTCCACTTATCTTTTTG
Table 2

The siRNA sequences used in this study.

https://doi.org/10.7554/eLife.15528.016
siRNASequences (5’-3’)
METTL35’-CTGCAAGTATGTTCACTATGA-3’
5’-AGGAGCCAGCCAAGAAATCAA-3’
METTL145’-TGGTGCCGTGTTAAATAGCAA-3’
5’-AAGGATGAGTTAATAGCTAAA-3’
FTO5’-AAATAGCCGCTGCTTGTGAGA-3’
AlkBH55’-AAACAAGTACTTCTTCGGCGA-3’
Table 3

Sequences of PCR primers and probes used in this study.

https://doi.org/10.7554/eLife.15528.017
PrimersSequences (5’-3’)
HIV-1 gag forwardCTAGAACGATTCGCAGTTAATCCT
HIV-1 gag reverseCTATCCTTTGATGCACACAATAGAG
Unspliced GAPDH forwardGGGAAGCTCAAGGGAGATAAAATTC
Unspliced GAPDH reverseGTAGTTGAGGTCAATGAAGGGGTC
Spliced GAPDH forwardGGAAGGTGAAGGTCGGAGTCAACGG
Spliced GAPDH reverseCTGTTGTCATACTTCTCATGGTTCAC
MH531 forward (for HIV-1 late reverse transcription (RT) products)TGTGTGCCCGTCTGTTGTGT
BB reverse (for late RT products)GGATTAACTGCGAATCGTTC
HIV-1 late RT product probeTCGACGCAGGACTCGGCTTGCT
2-LTR probeAAGTAGTGTGTGCCCGTCTGTTGTGTGACTC
2-LTR forwardGCCTGGGAGCTCTCTGGCTAA
2-LTR reverseGCCTTGTGTGTGGTAGATCCA
LW59 (forward, alternative for late RT detection in shRNA vector-transduced cells)GACATAGCAGGAACTACTAGTACCC
LW60 (reverse, alternative for late RT detection in shRNA vector-transduced cells)GGTCCTTGTCTTATGTCCAGAATGC

Download links