Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration

  1. Francisco J Barrionuevo
  2. Alicia Hurtado
  3. Gwang-Jin Kim
  4. Francisca M Real
  5. Mohammed Bakkali
  6. Janel L Kopp
  7. Maike Sander
  8. Gerd Scherer
  9. Miguel Burgos
  10. Rafael Jiménez  Is a corresponding author
  1. Universidad de Granada, Spain
  2. University of Granada, Spain
  3. University of Freiburg, Germany
  4. Max Planck Institute for Molecular Genetics, Germany
  5. University of California, San Diego, United States

Abstract

The new concept of mammalian sex maintenance establishes that particular key genes must remain active in the differentiated gonads to avoid genetic sex reprogramming, as described in adult ovaries after Foxl2 ablation. Dmrt1 plays a similar role in postnatal testes, but the mechanism of adult testis maintenance remains mostly unknown. Sox9 and Sox8 are required for postnatal male fertility, but their role in the adult testis has not been investigated. Here we show that after ablation of Sox9 in Sertoli cells of adult, fertile Sox8-/- mice, testis-to-ovary genetic reprogramming occurs and Sertoli cells transdifferentiate into granulosa-like cells. The process of testis regression culminates in complete degeneration of the seminiferous tubules, which become acellular, empty spaces among the extant Leydig cells. DMRT1 protein only remains in non-mutant cells, showing that SOX9/8 maintain Dmrt1 expression in the adult testis. Also, Sox9/8 warrant testis integrity by controlling the expression of structural proteins and protecting Sertoli cells from early apoptosis. Concluding, this study shows that, in addition to its crucial role in testis development, Sox9, together with Sox8 and coordinately with Dmrt1, also controls adult testis maintenance.

Article and author information

Author details

  1. Francisco J Barrionuevo

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Alicia Hurtado

    Departamento de Genética e Instituto de Biotecnología, University of Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Gwang-Jin Kim

    Institute of Human Genetics, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Francisca M Real

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohammed Bakkali

    Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Janel L Kopp

    Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maike Sander

    Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerd Scherer

    Institute of Human Genetics, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Miguel Burgos

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Rafael Jiménez

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    For correspondence
    rjimenez@ugr.es
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the guidelines for the protection of the animals used in scientific experimentation (Decree-Law 53/2013), dictated by the Spanish Ministry of Presidency. The protocol was approved by the Ethical Committee for Animal Experimentation of theUniversity of Granada (Ref. No.: 123-CEEA-UGR-2011). All surgery, except the BTB permeability experiment, was performed post-mortem after cervical dislocation. BTB experiment was performed under anesthesia for 30 min and then the animals were sacrificed without recovery. Every effort was made to minimize suffering.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Publication history

  1. Received: February 29, 2016
  2. Accepted: June 7, 2016
  3. Accepted Manuscript published: June 21, 2016 (version 1)
  4. Version of Record published: July 14, 2016 (version 2)

Copyright

© 2016, Barrionuevo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,440
    Page views
  • 688
    Downloads
  • 59
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco J Barrionuevo
  2. Alicia Hurtado
  3. Gwang-Jin Kim
  4. Francisca M Real
  5. Mohammed Bakkali
  6. Janel L Kopp
  7. Maike Sander
  8. Gerd Scherer
  9. Miguel Burgos
  10. Rafael Jiménez
(2016)
Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration
eLife 5:e15635.
https://doi.org/10.7554/eLife.15635

Further reading

    1. Developmental Biology
    2. Neuroscience
    Miguel Ramirez et al.
    Tools and Resources

    We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas (https://goldowitzlab.shinyapps.io/developing_mouse_cerebellum_enhancer_atlas/), where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Sobhika Agarwala et al.
    Research Article

    The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently-labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.