Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration

  1. Francisco J Barrionuevo
  2. Alicia Hurtado
  3. Gwang-Jin Kim
  4. Francisca M Real
  5. Mohammed Bakkali
  6. Janel L Kopp
  7. Maike Sander
  8. Gerd Scherer
  9. Miguel Burgos
  10. Rafael Jiménez  Is a corresponding author
  1. Universidad de Granada, Spain
  2. University of Granada, Spain
  3. University of Freiburg, Germany
  4. Max Planck Institute for Molecular Genetics, Germany
  5. University of California, San Diego, United States

Abstract

The new concept of mammalian sex maintenance establishes that particular key genes must remain active in the differentiated gonads to avoid genetic sex reprogramming, as described in adult ovaries after Foxl2 ablation. Dmrt1 plays a similar role in postnatal testes, but the mechanism of adult testis maintenance remains mostly unknown. Sox9 and Sox8 are required for postnatal male fertility, but their role in the adult testis has not been investigated. Here we show that after ablation of Sox9 in Sertoli cells of adult, fertile Sox8-/- mice, testis-to-ovary genetic reprogramming occurs and Sertoli cells transdifferentiate into granulosa-like cells. The process of testis regression culminates in complete degeneration of the seminiferous tubules, which become acellular, empty spaces among the extant Leydig cells. DMRT1 protein only remains in non-mutant cells, showing that SOX9/8 maintain Dmrt1 expression in the adult testis. Also, Sox9/8 warrant testis integrity by controlling the expression of structural proteins and protecting Sertoli cells from early apoptosis. Concluding, this study shows that, in addition to its crucial role in testis development, Sox9, together with Sox8 and coordinately with Dmrt1, also controls adult testis maintenance.

Article and author information

Author details

  1. Francisco J Barrionuevo

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Alicia Hurtado

    Departamento de Genética e Instituto de Biotecnología, University of Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Gwang-Jin Kim

    Institute of Human Genetics, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Francisca M Real

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohammed Bakkali

    Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Janel L Kopp

    Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maike Sander

    Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerd Scherer

    Institute of Human Genetics, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Miguel Burgos

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Rafael Jiménez

    Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
    For correspondence
    rjimenez@ugr.es
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the guidelines for the protection of the animals used in scientific experimentation (Decree-Law 53/2013), dictated by the Spanish Ministry of Presidency. The protocol was approved by the Ethical Committee for Animal Experimentation of theUniversity of Granada (Ref. No.: 123-CEEA-UGR-2011). All surgery, except the BTB permeability experiment, was performed post-mortem after cervical dislocation. BTB experiment was performed under anesthesia for 30 min and then the animals were sacrificed without recovery. Every effort was made to minimize suffering.

Copyright

© 2016, Barrionuevo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,308
    views
  • 753
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francisco J Barrionuevo
  2. Alicia Hurtado
  3. Gwang-Jin Kim
  4. Francisca M Real
  5. Mohammed Bakkali
  6. Janel L Kopp
  7. Maike Sander
  8. Gerd Scherer
  9. Miguel Burgos
  10. Rafael Jiménez
(2016)
Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration
eLife 5:e15635.
https://doi.org/10.7554/eLife.15635

Share this article

https://doi.org/10.7554/eLife.15635

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.