Loss of presenilin function is associated with a selective gain of APP function

Abstract

Presenilin 1 (PS1) is an essential γ-secretase component, the enzyme responsible for amyloid precursor protein (APP) intramembraneous cleavage. Mutations in PS1 lead to dominant-inheritance of early-onset familial Alzheimer's disease (FAD). Although expression of FAD-linked PS1 mutations enhances toxic Aβ production, the importance of other APP metabolites and γ-secretase substrates in the etiology of the disease has not been confirmed. We report that neurons expressing FAD-linked PS1 variants or functionally deficient PS1 exhibit enhanced axodendritic outgrowth due to increased levels of APP intracellular C-terminal fragment (APP-CTF). APP expression is required for exuberant neurite outgrowth and hippocampal axonal sprouting observed in knock-in mice expressing FAD-linked PS1 mutation. APP-CTF accumulation initiates CREB signaling cascade through an association of APP-CTF with Gαs protein. We demonstrate that pathological PS1 loss-of-function impinges on neurite formation through a selective APP gain-of-function that could impact on axodendritic connectivity and contribute to aberrant axonal sprouting observed in AD patients.

Article and author information

Author details

  1. Carole Deyts

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mary Clutter

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacy Herrera

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Natalia Jovanovic

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Goddi

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angèle T Parent

    Departments of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    aparent@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Serge Przedborski, Columbia University Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#71339) of the University of Chicago. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Chicago (Permit Number: A3523-01).

Version history

  1. Received: February 29, 2016
  2. Accepted: May 18, 2016
  3. Accepted Manuscript published: May 19, 2016 (version 1)
  4. Version of Record published: June 21, 2016 (version 2)

Copyright

© 2016, Deyts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,263
    views
  • 588
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carole Deyts
  2. Mary Clutter
  3. Stacy Herrera
  4. Natalia Jovanovic
  5. Anna Goddi
  6. Angèle T Parent
(2016)
Loss of presenilin function is associated with a selective gain of APP function
eLife 5:e15645.
https://doi.org/10.7554/eLife.15645

Share this article

https://doi.org/10.7554/eLife.15645

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.