1. Neuroscience
Download icon

An inhibitory corticostriatal pathway

  1. Crystal Rock
  2. Hector Zurita
  3. Charles Wilson
  4. Alfonso junior Apicella  Is a corresponding author
  1. University of Texas at San Antonio, United States
Research Article
  • Cited 31
  • Views 4,449
  • Annotations
Cite this article as: eLife 2016;5:e15890 doi: 10.7554/eLife.15890

Abstract

Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication.

Article and author information

Author details

  1. Crystal Rock

    Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hector Zurita

    Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Charles Wilson

    Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfonso junior Apicella

    Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
    For correspondence
    alfonso.apicella@utsa.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Apicella IACUC protocol number: IS00000135All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of Texas at San Antonio. Procedures followed animal welfare guidelines set by the National Institutes of Health. Mice used in this experiment were housed in a vivarium maintaining a 12 hour light/dark schedule and given ad libidum access to mouse chow and water.Mice were initially anesthetized with isoflurane (3%; 1 L/min O2 flow) in preparation for the stereotaxic injections.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Publication history

  1. Received: March 10, 2016
  2. Accepted: May 8, 2016
  3. Accepted Manuscript published: May 9, 2016 (version 1)
  4. Version of Record published: June 13, 2016 (version 2)
  5. Version of Record updated: June 21, 2016 (version 3)

Copyright

© 2016, Rock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,449
    Page views
  • 1,182
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Kara A Fulton, Kevin L Briggman
    Tools and Resources

    A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.

    1. Neuroscience
    Alexa Pichet Binette et al.
    Research Article

    Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focussed on free-water corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.