Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

  1. Loïs S Miraucourt
  2. Jennifer Tsui
  3. Delphine Gobert
  4. Jean-François Desjardins
  5. Anne Schohl
  6. Mari Sild
  7. Perry Spratt
  8. Annie Castonguay
  9. Yves De Koninck
  10. Nicholas Marsh-Armstrong
  11. Paul W Wiseman
  12. Edward S Ruthazer  Is a corresponding author
  1. McGill University, Canada
  2. Institut universitaire en santé mentale de Québec, Canada
  3. Johns Hopkins University School of Medicine, United States
  4. University of La Verne, United States

Abstract

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina but the role of endocannabinoids in vision is not fully understood. Here we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl- levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low light conditions. These results highlight a role for endocannabinoids in vision, and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl- regulation.

Article and author information

Author details

  1. Loïs S Miraucourt

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4812-6342
  2. Jennifer Tsui

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Delphine Gobert

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-François Desjardins

    Department of Physics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Schohl

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Mari Sild

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Perry Spratt

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Annie Castonguay

    Institut universitaire en santé mentale de Québec, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Yves De Koninck

    Institut universitaire en santé mentale de Québec, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas Marsh-Armstrong

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul W Wiseman

    Department of Biology, University of La Verne, La Verne, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Edward S Ruthazer

    Montreal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    edward.ruthazer@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0452-3151

Funding

Fonds de Recherche du Québec - Santé (research chair, postdoctoral fellowship)

  • Jennifer Tsui
  • Delphine Gobert
  • Edward S Ruthazer

Canadian Institutes of Health Research (operating grants)

  • Edward S Ruthazer

Epilepsie Canada (postdoctoral award)

  • Loïs S Miraucourt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Canadian Council on Animal Care. All animals were handled according to animal care committee protocols (#5071) approved by the Animal Care Committees of the Montreal Neurological Institute and McGill University.

Version history

  1. Received: March 10, 2016
  2. Accepted: August 4, 2016
  3. Accepted Manuscript published: August 8, 2016 (version 1)
  4. Version of Record published: August 16, 2016 (version 2)

Copyright

© 2016, Miraucourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,411
    views
  • 668
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loïs S Miraucourt
  2. Jennifer Tsui
  3. Delphine Gobert
  4. Jean-François Desjardins
  5. Anne Schohl
  6. Mari Sild
  7. Perry Spratt
  8. Annie Castonguay
  9. Yves De Koninck
  10. Nicholas Marsh-Armstrong
  11. Paul W Wiseman
  12. Edward S Ruthazer
(2016)
Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells
eLife 5:e15932.
https://doi.org/10.7554/eLife.15932

Share this article

https://doi.org/10.7554/eLife.15932

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.