Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

  1. Loïs S Miraucourt
  2. Jennifer Tsui
  3. Delphine Gobert
  4. Jean-François Desjardins
  5. Anne Schohl
  6. Mari Sild
  7. Perry Spratt
  8. Annie Castonguay
  9. Yves De Koninck
  10. Nicholas Marsh-Armstrong
  11. Paul W Wiseman
  12. Edward S Ruthazer  Is a corresponding author
  1. McGill University, Canada
  2. Institut universitaire en santé mentale de Québec, Canada
  3. Johns Hopkins University School of Medicine, United States
  4. University of La Verne, United States

Abstract

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina but the role of endocannabinoids in vision is not fully understood. Here we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl- levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low light conditions. These results highlight a role for endocannabinoids in vision, and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl- regulation.

Article and author information

Author details

  1. Loïs S Miraucourt

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4812-6342
  2. Jennifer Tsui

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Delphine Gobert

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-François Desjardins

    Department of Physics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Schohl

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Mari Sild

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Perry Spratt

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Annie Castonguay

    Institut universitaire en santé mentale de Québec, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Yves De Koninck

    Institut universitaire en santé mentale de Québec, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas Marsh-Armstrong

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul W Wiseman

    Department of Biology, University of La Verne, La Verne, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Edward S Ruthazer

    Montreal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    edward.ruthazer@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0452-3151

Funding

Fonds de Recherche du Québec - Santé (research chair, postdoctoral fellowship)

  • Jennifer Tsui
  • Delphine Gobert
  • Edward S Ruthazer

Canadian Institutes of Health Research (operating grants)

  • Edward S Ruthazer

Epilepsie Canada (postdoctoral award)

  • Loïs S Miraucourt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Canadian Council on Animal Care. All animals were handled according to animal care committee protocols (#5071) approved by the Animal Care Committees of the Montreal Neurological Institute and McGill University.

Version history

  1. Received: March 10, 2016
  2. Accepted: August 4, 2016
  3. Accepted Manuscript published: August 8, 2016 (version 1)
  4. Version of Record published: August 16, 2016 (version 2)

Copyright

© 2016, Miraucourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,438
    views
  • 670
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loïs S Miraucourt
  2. Jennifer Tsui
  3. Delphine Gobert
  4. Jean-François Desjardins
  5. Anne Schohl
  6. Mari Sild
  7. Perry Spratt
  8. Annie Castonguay
  9. Yves De Koninck
  10. Nicholas Marsh-Armstrong
  11. Paul W Wiseman
  12. Edward S Ruthazer
(2016)
Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells
eLife 5:e15932.
https://doi.org/10.7554/eLife.15932

Share this article

https://doi.org/10.7554/eLife.15932

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.