The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled

  1. Tripti Gupta
  2. Arun Kumar
  3. Cattenoz Pierre
  4. K VijayRaghavan
  5. Angela Giangrande  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. University of California, Riverside, United States
  3. Tata Institute for Fundamental Research, India

Abstract

Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules involved in cell interaction control collective migration, but what their precise role is and how is their expression finely tuned to orchestrate the different steps of the process is poorly understood. Here we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the Drosophila wing. Frazzled expression is induced by the Glide/Gcm transcription factor in a dose dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia towards their final destination.

Article and author information

Author details

  1. Tripti Gupta

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    No competing interests declared.
  2. Arun Kumar

    Department of Entomology, University of California, Riverside, Riverside, United States
    Competing interests
    No competing interests declared.
  3. Cattenoz Pierre

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    No competing interests declared.
  4. K VijayRaghavan

    Department of Developmental Biology and Genetics, Tata Institute for Fundamental Research, Bangalore, India
    Competing interests
    K VijayRaghavan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4705-5629
  5. Angela Giangrande

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    angela@igbmc.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6278-5120

Funding

CEFIPRA-4403-1 (graduate student fellowship)

  • K VijayRaghavan
  • Angela Giangrande

Agence Nationale de la Recherche (international award)

  • Angela Giangrande

Fondation pour la Recherche Médicale (labelisation)

  • Angela Giangrande

ARC Centre of Excellence for Coherent X-Ray Science (Projet grant)

  • Angela Giangrande

Ligue Contre le Cancer (Grant regional)

  • Angela Giangrande

USIAS

  • Angela Giangrande

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,123
    views
  • 302
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tripti Gupta
  2. Arun Kumar
  3. Cattenoz Pierre
  4. K VijayRaghavan
  5. Angela Giangrande
(2016)
The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled
eLife 5:e15983.
https://doi.org/10.7554/eLife.15983

Share this article

https://doi.org/10.7554/eLife.15983

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.