Place cells on a maze encode routes rather than destinations

  1. Roddy M Grieves
  2. Emma R Wood
  3. Paul A Dudchenko  Is a corresponding author
  1. University of Stirling, United Kingdom
  2. University of Edinburgh, United Kingdom

Abstract

Hippocampal place cells fire at different rates when a rodent runs through a given location on its way to different destinations. However, it is unclear whether such firing represents the animal's intended destination or the execution of a specific trajectory. To distinguish between these possibilities, Lister Hooded rats (n=8) were trained to navigate from a start box to three goal locations via four partially overlapping routes. Two of these led to the same goal location. Of the cells that fired on these two routes, 95.8% showed route-dependent firing (firing on only one route), whereas only two cells (4.2%) showed goal-dependent firing (firing similarly on both routes). In addition, route-dependent place cells over-represented the less discriminable routes, and place cells in general over-represented the start location. These results indicate that place cell firing on overlapping routes reflects the animal's route, not its goals, and that this firing may aid spatial discrimination.

Article and author information

Author details

  1. Roddy M Grieves

    School of Natural Sciences, University of Stirling, Stirling, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Emma R Wood

    Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul A Dudchenko

    School of Natural Sciences, University of Stirling, Stirling, United Kingdom
    For correspondence
    p.a.dudchenko@stir.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This experiment complied with the national [Animals (Scientific Procedures) Act, 1986, United 372 Kingdom] and international [European Communities Council Directive of November 24, 1986 (86/609/EEC)] legislation governing the maintenance of laboratory animals and their use in scientific experiments.

Copyright

© 2016, Grieves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,067
    views
  • 886
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roddy M Grieves
  2. Emma R Wood
  3. Paul A Dudchenko
(2016)
Place cells on a maze encode routes rather than destinations
eLife 5:e15986.
https://doi.org/10.7554/eLife.15986

Share this article

https://doi.org/10.7554/eLife.15986

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.