Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

  1. Shekhar Srivastava
  2. Saswati Panda
  3. Zhai Li
  4. Stephen R Fuhs
  5. Tony Hunter
  6. Dennis J Thiele
  7. Stevan R Hubbard  Is a corresponding author
  8. Edward Y Skolnik  Is a corresponding author
  1. Kimmel Center for Biology and Medicine at the Skirball Institute, United States
  2. Salk Institute for Biological Studies, United States
  3. Duke University School of Medicine, United States

Abstract

KCa2.1, KCa2.2, KCa2.3, and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NPDK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site.

Article and author information

Author details

  1. Shekhar Srivastava

    Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York, United States
    Competing interests
    No competing interests declared.
  2. Saswati Panda

    Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York, United States
    Competing interests
    No competing interests declared.
  3. Zhai Li

    Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York, United States
    Competing interests
    No competing interests declared.
  4. Stephen R Fuhs

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Tony Hunter

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    Tony Hunter, Senior editor, eLife/i.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7691-6993
  6. Dennis J Thiele

    Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  7. Stevan R Hubbard

    Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York, United States
    For correspondence
    stevan.hubbard@med.nyu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2707-9383
  8. Edward Y Skolnik

    Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York, United States
    For correspondence
    edward.skolnik@med.nyu.edu
    Competing interests
    No competing interests declared.

Funding

National Institute of Allergy and Infectious Diseases (R21AI107443)

  • Stevan R Hubbard

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK074192)

  • Dennis J Thiele

National Institute of General Medical Sciences (R01GM084195)

  • Edward Y Skolnik

National Cancer Institute (R01CA194584)

  • Tony Hunter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Srivastava et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,149
    views
  • 444
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shekhar Srivastava
  2. Saswati Panda
  3. Zhai Li
  4. Stephen R Fuhs
  5. Tony Hunter
  6. Dennis J Thiele
  7. Stevan R Hubbard
  8. Edward Y Skolnik
(2016)
Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1
eLife 5:e16093.
https://doi.org/10.7554/eLife.16093

Share this article

https://doi.org/10.7554/eLife.16093

Further reading

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.