Associative learning changes cross-modal representations in the gustatory cortex

  1. Roberto Vincis  Is a corresponding author
  2. Alfredo Fontanini  Is a corresponding author
  1. State University of New York at Stony Brook, United States

Abstract

A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.

Article and author information

Author details

  1. Roberto Vincis

    Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, United States
    For correspondence
    roberto.vincis@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5812-7624
  2. Alfredo Fontanini

    Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, United States
    For correspondence
    alfredo.fontanini@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4561-9563

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P2GEP3_151816)

  • Roberto Vincis

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P300PA_161021)

  • Roberto Vincis

National Institute on Deafness and Other Communication Disorders (R01-DC010389)

  • Alfredo Fontanini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed according to approved Institutional Animal Care and Use Committee protocols (#244930-1) at Stony Brook University, and complied with university, state, and federal regulation on the care and use of laboratory animals.

Copyright

© 2016, Vincis & Fontanini

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,226
    views
  • 600
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roberto Vincis
  2. Alfredo Fontanini
(2016)
Associative learning changes cross-modal representations in the gustatory cortex
eLife 5:e16420.
https://doi.org/10.7554/eLife.16420

Share this article

https://doi.org/10.7554/eLife.16420

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.