Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys

  1. Marc Deffains  Is a corresponding author
  2. Liliya Iskhakova
  3. Shiran Katabi
  4. Suzanne N Haber
  5. Zvi Israel
  6. Hagai Bergman
  1. The Hebrew University-Hadassah Medical School, Israel
  2. University of Rochester School of Medicine, United States
  3. Hadassah University Hospital, Israel

Abstract

The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders.

Article and author information

Author details

  1. Marc Deffains

    Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
    For correspondence
    marcd@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0734-6541
  2. Liliya Iskhakova

    Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiran Katabi

    Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Suzanne N Haber

    Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zvi Israel

    Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Hagai Bergman

    Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2402-6673

Funding

The Edmond and Lily Safra Center

  • Marc Deffains
  • Liliya Iskhakova

The Rosetrees and Vorst Foundations (ROSETREES 251112 and ROSETREES TRUST 271010)

  • Hagai Bergman

The Simone and Bernard Guttman Chair in Brain Research

  • Hagai Bergman

Ministry of Aliyah and Immigrant Absorption

  • Liliya Iskhakova

The Teva National Network of Excellence in Neuroscience

  • Liliya Iskhakova

The Israel-US Binational Science Foundation

  • Suzanne N Haber
  • Zvi Israel
  • Hagai Bergman

The Adelis Foundation

  • Suzanne N Haber
  • Zvi Israel
  • Hagai Bergman

European Research Council (GA 322495 CLUE-BGD 098777)

  • Hagai Bergman

Israel Science Foundation

  • Hagai Bergman

The German Israel Science Foundation (I-1222-377.13/2010 002223)

  • Hagai Bergman

The Canadian Friends of the Hebrew University

  • Hagai Bergman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rui M Costa, Fundação Champalimaud, Portugal

Ethics

Animal experimentation: All experimental protocols were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and with the Hebrew University guidelines for the use and care of laboratory animals in research, supervised by the institutional animal care and use committee of the faculty of medicine, the Hebrew University, Jerusalem, Israel (Ethical Application Reference Number: MD-15-14412-5 ). The Hebrew University is an Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) internationally accredited institute.

Version history

  1. Received: March 29, 2016
  2. Accepted: August 22, 2016
  3. Accepted Manuscript published: August 23, 2016 (version 1)
  4. Version of Record published: September 20, 2016 (version 2)

Copyright

© 2016, Deffains et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,478
    views
  • 730
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marc Deffains
  2. Liliya Iskhakova
  3. Shiran Katabi
  4. Suzanne N Haber
  5. Zvi Israel
  6. Hagai Bergman
(2016)
Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys
eLife 5:e16443.
https://doi.org/10.7554/eLife.16443

Share this article

https://doi.org/10.7554/eLife.16443

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.