Mesencephalic representations of recent experience influence decision making

  1. John A Thompson  Is a corresponding author
  2. Jamie D Costabile
  3. Gidon Felsen
  1. University of Colorado School of Medicine, United States

Abstract

Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection.

Article and author information

Author details

  1. John A Thompson

    Department of Neurosurgery, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    john.a.thompson@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2991-5194
  2. Jamie D Costabile

    Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gidon Felsen

    Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0745-8279

Funding

National Institute of Neurological Disorders and Stroke

  • Gidon Felsen

Boettcher Foundation

  • Gidon Felsen

National Institute of Neurological Disorders and Stroke (P30NS048154)

  • Gidon Felsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to protocols approved by the University of Colorado School of Medicine Institutional Animal Care and Use Committee (protocol #: B-90215(11)1D).

Copyright

© 2016, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,637
    views
  • 342
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John A Thompson
  2. Jamie D Costabile
  3. Gidon Felsen
(2016)
Mesencephalic representations of recent experience influence decision making
eLife 5:e16572.
https://doi.org/10.7554/eLife.16572

Share this article

https://doi.org/10.7554/eLife.16572

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.