Abstract

NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level.

Article and author information

Author details

  1. Philipp Schlegel

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-1314
  2. Michael J Texada

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2479-1241
  3. Anton Miroschnikow

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Schoofs

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sebastian Hückesfeld

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Peters

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Casey M Schneider-Mizell

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9477-3853
  8. Haluk Lacin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2468-9618
  9. Feng Li

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-6536
  13. Michael J Pankratz

    Department of Molecular Brain Physiology and Behavior, LIMES Institute, Bonn, Germany
    For correspondence
    pankratz@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5458-6471

Funding

Howard Hughes Medical Institute

  • Michael J Texada
  • Casey M Schneider-Mizell
  • Haluk Lacin
  • Feng Li
  • Richard D Fetter
  • James W Truman
  • Albert Cardona

Deutsche Forschungsgemeinschaft

  • Philipp Schlegel
  • Anton Miroschnikow
  • Andreas Schoofs
  • Sebastian Hückesfeld
  • Marc Peters
  • Michael J Pankratz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: April 8, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 15, 2016 (version 1)
  4. Version of Record published: December 23, 2016 (version 2)
  5. Version of Record updated: June 22, 2021 (version 3)

Copyright

© 2016, Schlegel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,627
    views
  • 989
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philipp Schlegel
  2. Michael J Texada
  3. Anton Miroschnikow
  4. Andreas Schoofs
  5. Sebastian Hückesfeld
  6. Marc Peters
  7. Casey M Schneider-Mizell
  8. Haluk Lacin
  9. Feng Li
  10. Richard D Fetter
  11. James W Truman
  12. Albert Cardona
  13. Michael J Pankratz
(2016)
Synaptic transmission parallels neuromodulation in a central food-intake circuit
eLife 5:e16799.
https://doi.org/10.7554/eLife.16799

Share this article

https://doi.org/10.7554/eLife.16799

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.