Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of DAPK1

  1. Jamie McQueen
  2. Tomas J Ryan
  3. Sean McKay
  4. Katie FM Marwick
  5. Paul E Baxter
  6. Sarah M Carpanini
  7. Thomas M Wishart
  8. Thomas H Gillingwater
  9. Jean C Manson
  10. David JA Wyllie
  11. Seth GN Grant
  12. Barry McColl  Is a corresponding author
  13. Noboru Komiyama
  14. Giles E Hardingham  Is a corresponding author
  1. Edinburgh Medical School, University of Edinburgh, United Kingdom
  2. Trinity College Dublin, Ireland
  3. University of Edinburgh, United Kingdom
  4. The Roslin Institute, United Kingdom
  5. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by DAPK1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by DAPK1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of DAPK1 or altered Ser-1303 phosphorylation.

Article and author information

Author details

  1. Jamie McQueen

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Tomas J Ryan

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Sean McKay

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Katie FM Marwick

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul E Baxter

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah M Carpanini

    The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas M Wishart

    University of Edinburgh, The Roslin Institute, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas H Gillingwater

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean C Manson

    The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. David JA Wyllie

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4957-6049
  11. Seth GN Grant

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8732-8735
  12. Barry McColl

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Barry.McColl@roslin.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0521-9656
  13. Noboru Komiyama

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Giles E Hardingham

    UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Giles.Hardingham@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7629-5314

Funding

Wellcome (WT088156)

  • Giles E Hardingham

Medical Research Council (MRC_G0902044)

  • Jamie McQueen
  • Sean McKay
  • Paul E Baxter
  • Giles E Hardingham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments using live animals were conducted under the authority of UK Home Office project and personal licences and adhered to regulations specified in the Animals (Scientific Procedures) Act (1986) and Directive 2010/63/EU and were approved by both The Roslin Institute's and the University of Edinburgh's Animal Welfare and Ethics Committees. Experimental design, analysis and reporting followed the ARRIVE guidelines (https://www.nc3rs.org.uk/arrive-guidelines) where possible. Animal experimentation: Animals used in this study were treated in accordance with UK Animal Scientific Procedures Act (1986) . The relevant Home Office project licences are P1351480E and 60/4407, and the use of genetically modified organisms approved by local committee reference SBMS 13_007.

Copyright

© 2017, McQueen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,490
    views
  • 444
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jamie McQueen
  2. Tomas J Ryan
  3. Sean McKay
  4. Katie FM Marwick
  5. Paul E Baxter
  6. Sarah M Carpanini
  7. Thomas M Wishart
  8. Thomas H Gillingwater
  9. Jean C Manson
  10. David JA Wyllie
  11. Seth GN Grant
  12. Barry McColl
  13. Noboru Komiyama
  14. Giles E Hardingham
(2017)
Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of DAPK1
eLife 6:e17161.
https://doi.org/10.7554/eLife.17161

Share this article

https://doi.org/10.7554/eLife.17161

Further reading

    1. Neuroscience
    Magdalena Solyga, Georg B Keller
    Research Article

    Our movements result in predictable sensory feedback that is often multimodal. Based on deviations between predictions and actual sensory input, primary sensory areas of cortex have been shown to compute sensorimotor prediction errors. How prediction errors in one sensory modality influence the computation of prediction errors in another modality is still unclear. To investigate multimodal prediction errors in mouse auditory cortex, we used a virtual environment to experimentally couple running to both self-generated auditory and visual feedback. Using two-photon microscopy, we first characterized responses of layer 2/3 (L2/3) neurons to sounds, visual stimuli, and running onsets and found responses to all three stimuli. Probing responses evoked by audiomotor (AM) mismatches, we found that they closely resemble visuomotor (VM) mismatch responses in visual cortex (V1). Finally, testing for cross modal influence on AM mismatch responses by coupling both sound amplitude and visual flow speed to the speed of running, we found that AM mismatch responses were amplified when paired with concurrent VM mismatches. Our results demonstrate that multimodal and non-hierarchical interactions shape prediction error responses in cortical L2/3.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.