Abstract

Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7+ quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube's function as a stem cell niche.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Pengpeng Bi

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Feng Yue

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yusuke Sato

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Wirbisky

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weiyi Liu

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tizhong Shan

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yefei Wen

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2121-7538
  8. Daoguo Zhou

    Department of Biological Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jennifer Freeman

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shihuan Kuang

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    For correspondence
    skuang@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9180-3180

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR060652)

  • Shihuan Kuang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne C Ferguson-Smith, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All procedures involving mice were approved by Purdue University's Animal Care and Use Committee under protocol # 1112000440.

Version history

  1. Received: May 2, 2016
  2. Accepted: September 17, 2016
  3. Accepted Manuscript published: September 19, 2016 (version 1)
  4. Version of Record published: October 19, 2016 (version 2)
  5. Version of Record updated: August 8, 2017 (version 3)

Copyright

© 2016, Bi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,557
    views
  • 1,263
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengpeng Bi
  2. Feng Yue
  3. Yusuke Sato
  4. Sara Wirbisky
  5. Weiyi Liu
  6. Tizhong Shan
  7. Yefei Wen
  8. Daoguo Zhou
  9. Jennifer Freeman
  10. Shihuan Kuang
(2016)
Stage-specific effects of Notch activation during skeletal myogenesis
eLife 5:e17355.
https://doi.org/10.7554/eLife.17355

Share this article

https://doi.org/10.7554/eLife.17355

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Sanjay Kumar Sukumar, Vimala Antonydhason ... Ruth H Palmer
    Research Article

    Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.