1. Developmental Biology
Download icon

Stage-specific effects of Notch activation during skeletal myogenesis

Research Article
  • Cited 36
  • Views 4,252
  • Annotations
Cite this article as: eLife 2016;5:e17355 doi: 10.7554/eLife.17355

Abstract

Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7+ quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube's function as a stem cell niche.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Pengpeng Bi

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Feng Yue

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yusuke Sato

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Wirbisky

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weiyi Liu

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tizhong Shan

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yefei Wen

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2121-7538
  8. Daoguo Zhou

    Department of Biological Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jennifer Freeman

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shihuan Kuang

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    For correspondence
    skuang@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9180-3180

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR060652)

  • Shihuan Kuang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving mice were approved by Purdue University's Animal Care and Use Committee under protocol # 1112000440.

Reviewing Editor

  1. Anne C Ferguson-Smith, University of Cambridge, United Kingdom

Publication history

  1. Received: May 2, 2016
  2. Accepted: September 17, 2016
  3. Accepted Manuscript published: September 19, 2016 (version 1)
  4. Version of Record published: October 19, 2016 (version 2)
  5. Version of Record updated: August 8, 2017 (version 3)

Copyright

© 2016, Bi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,252
    Page views
  • 1,097
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article Updated

    We developed an Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core non-homologous end-joining (NHEJ) DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double Knock Out (DKO) settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights into the understanding of the clinical manifestations of human XRCC4-deficient condition, in particular its absence of immune deficiency.

    1. Cell Biology
    2. Developmental Biology
    Deepika Sharma et al.
    Research Article

    Osteoblast differentiation is sequentially characterized by high rates of proliferation followed by increased protein and matrix synthesis, processes that require substantial amino acid acquisition and production. How osteoblasts obtain or maintain intracellular amino acid production is poorly understood. Here we identify SLC1A5 as a critical amino acid transporter during bone development. Using a genetic and metabolomic approach, we show SLC1A5 acts cell autonomously to regulate protein synthesis and osteoblast differentiation. SLC1A5 provides both glutamine and asparagine which are essential for osteoblast differentiation. Mechanistically, glutamine and to a lesser extent asparagine support amino acid biosynthesis. Thus, osteoblasts depend on Slc1a5 to provide glutamine and asparagine, which are subsequently used to produce non-essential amino acids and support osteoblast differentiation and bone development.