Abstract

Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7+ quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube's function as a stem cell niche.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Pengpeng Bi

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Feng Yue

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yusuke Sato

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Wirbisky

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weiyi Liu

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tizhong Shan

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yefei Wen

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2121-7538
  8. Daoguo Zhou

    Department of Biological Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jennifer Freeman

    School of Health Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shihuan Kuang

    Department of Animal Sciences, Purdue University, West Lafayette, United States
    For correspondence
    skuang@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9180-3180

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR060652)

  • Shihuan Kuang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving mice were approved by Purdue University's Animal Care and Use Committee under protocol # 1112000440.

Copyright

© 2016, Bi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,650
    views
  • 1,277
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengpeng Bi
  2. Feng Yue
  3. Yusuke Sato
  4. Sara Wirbisky
  5. Weiyi Liu
  6. Tizhong Shan
  7. Yefei Wen
  8. Daoguo Zhou
  9. Jennifer Freeman
  10. Shihuan Kuang
(2016)
Stage-specific effects of Notch activation during skeletal myogenesis
eLife 5:e17355.
https://doi.org/10.7554/eLife.17355

Share this article

https://doi.org/10.7554/eLife.17355

Further reading

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.