Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice

  1. Shinichiro Hayashi
  2. Ichiro Manabe
  3. Yumi Suzuki
  4. Frédéric Relaix
  5. Yumiko Oishi  Is a corresponding author
  1. Tokyo Medical and Dental University, Japan
  2. Chiba University, Japan
  3. INSERM U955 IMRB-E10 UPEC, ENVA, EFS, 8 rue du general Sarrail, 94010 Creteil, France

Abstract

Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shinichiro Hayashi

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ichiro Manabe

    Department of Aging Research, Graduate School of Medicine, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yumi Suzuki

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Frédéric Relaix

    INSERM U955 IMRB-E10 UPEC, ENVA, EFS, 8 rue du general Sarrail, 94010 Creteil, Creteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Yumiko Oishi

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    For correspondence
    yuooishi-circ@umin.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4761-0952

Funding

Japan Society for the Promotion of Science (26882020)

  • Shinichiro Hayashi

Japan Society for the Promotion of Science (25H10)

  • Yumiko Oishi

Nakatomi Foundation

  • Shinichiro Hayashi

Uehara Memorial Foundation

  • Shinichiro Hayashi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation was approved by the Experimental Animal Care and Use Committee of Tokyo Medical and Dental University (approval numbers 2013-027C12 and 0170280C).

Copyright

© 2016, Hayashi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,873
    views
  • 929
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinichiro Hayashi
  2. Ichiro Manabe
  3. Yumi Suzuki
  4. Frédéric Relaix
  5. Yumiko Oishi
(2016)
Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice
eLife 5:e17462.
https://doi.org/10.7554/eLife.17462

Share this article

https://doi.org/10.7554/eLife.17462

Further reading

    1. Developmental Biology
    Yan-Xue Li, Xin-Le Kang ... Xiao-Fan Zhao
    Research Article

    Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.