Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice

  1. Shinichiro Hayashi
  2. Ichiro Manabe
  3. Yumi Suzuki
  4. Frédéric Relaix
  5. Yumiko Oishi  Is a corresponding author
  1. Tokyo Medical and Dental University, Japan
  2. Chiba University, Japan
  3. INSERM U955 IMRB-E10 UPEC, ENVA, EFS, 8 rue du general Sarrail, 94010 Creteil, France

Abstract

Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shinichiro Hayashi

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ichiro Manabe

    Department of Aging Research, Graduate School of Medicine, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yumi Suzuki

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Frédéric Relaix

    INSERM U955 IMRB-E10 UPEC, ENVA, EFS, 8 rue du general Sarrail, 94010 Creteil, Creteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Yumiko Oishi

    Department of Cellular and Molecular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
    For correspondence
    yuooishi-circ@umin.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4761-0952

Funding

Japan Society for the Promotion of Science (26882020)

  • Shinichiro Hayashi

Japan Society for the Promotion of Science (25H10)

  • Yumiko Oishi

Nakatomi Foundation

  • Shinichiro Hayashi

Uehara Memorial Foundation

  • Shinichiro Hayashi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Ethics

Animal experimentation: Animal experimentation was approved by the Experimental Animal Care and Use Committee of Tokyo Medical and Dental University (approval numbers 2013-027C12 and 0170280C).

Version history

  1. Received: May 6, 2016
  2. Accepted: October 13, 2016
  3. Accepted Manuscript published: October 15, 2016 (version 1)
  4. Version of Record published: October 21, 2016 (version 2)

Copyright

© 2016, Hayashi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,652
    views
  • 919
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinichiro Hayashi
  2. Ichiro Manabe
  3. Yumi Suzuki
  4. Frédéric Relaix
  5. Yumiko Oishi
(2016)
Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice
eLife 5:e17462.
https://doi.org/10.7554/eLife.17462

Share this article

https://doi.org/10.7554/eLife.17462

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Y Cheng
    Research Article Updated

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.