Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel  Is a corresponding author
  1. INSERM, France
  2. University of Vermont, United States
  3. Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Germany
  4. University of Vermont, University of Manchester, United States

Abstract

Cerebral small vessel disease (SVD) is a leading cause of stroke and dementia. CADASIL, an inherited SVD, alters cerebral artery function, compromising blood flow to the working brain. TIMP3 (tissue inhibitor of metalloproteinase 3) accumulation in the vascular extracellular matrix in CADASIL is a key contributor to cerebrovascular dysfunction. However, the linkage between elevated TIMP3 and compromised cerebral blood flow (CBF) remains unknown. Here, we show that TIMP3 acts through inhibition of the metalloprotease ADAM17 and HB-EGF to regulate cerebral arterial tone and blood flow responses. In a clinically relevant CADASIL mouse model, we show that exogenous ADAM17 or HB-EGF restores cerebral arterial tone and blood flow responses, and identify upregulated voltage-dependent potassium channel (KV) number in cerebral arterial myocytes as a heretofore-unrecognized downstream effector of TIMP3-induced deficits. These results support the concept that the balance of TIMP3 and ADAM17 activity modulates CBF through regulation of myocyte KV channel number.

Article and author information

Author details

  1. Carmen Capone

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabrice Dabertrand

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Celine Baron-Menguy

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Athena Chalaris

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lamia Ghezali

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valérie Domenga-Denier

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefanie Schmidt

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Clément Huneau

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Rose-John

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark T Nelson

    Department of Pharmacology, University of Vermont, University of Manchester, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anne Joutel

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    For correspondence
    anne.joutel@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3963-3860

Funding

Agence Nationale de la Recherche (ANR Genopath 2009-RAE09011HSA and ANR Blanc 2010-RPV11011HHA)

  • Anne Joutel

Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain)

  • Mark T Nelson
  • Anne Joutel

European Union (Horizon 2020 research and innovation programme SVDs@target, grant agreement No 666881)

  • Mark T Nelson
  • Anne Joutel

National Institute of Health (R37DK053832, PO1HL095488, RO1HL44455, R01HL121706, R01HL131181)

  • Mark T Nelson

Totman Medical Research Trust

  • Mark T Nelson

United Leukodystrophy Foundation (CADASIL Research Grant)

  • Fabrice Dabertrand

Deutsche Forschungsgemeinschaft (DFG, SFB877 project A1 and the Cluster of Excellence Inflammation at Interfaces)

  • Athena Chalaris
  • Stefan Rose-John

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in full accordance with the French guidelines for the use of animals in research and were approved by the "Lariboisière-Villemin" Institutional Animal Care and Use Committee (C2EA 09), with every effort made to minimize the number of animals used.

Copyright

© 2016, Capone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,929
    views
  • 434
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel
(2016)
Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics
eLife 5:e17536.
https://doi.org/10.7554/eLife.17536

Share this article

https://doi.org/10.7554/eLife.17536

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.