Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel  Is a corresponding author
  1. INSERM, France
  2. University of Vermont, United States
  3. Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Germany
  4. University of Vermont, University of Manchester, United States

Abstract

Cerebral small vessel disease (SVD) is a leading cause of stroke and dementia. CADASIL, an inherited SVD, alters cerebral artery function, compromising blood flow to the working brain. TIMP3 (tissue inhibitor of metalloproteinase 3) accumulation in the vascular extracellular matrix in CADASIL is a key contributor to cerebrovascular dysfunction. However, the linkage between elevated TIMP3 and compromised cerebral blood flow (CBF) remains unknown. Here, we show that TIMP3 acts through inhibition of the metalloprotease ADAM17 and HB-EGF to regulate cerebral arterial tone and blood flow responses. In a clinically relevant CADASIL mouse model, we show that exogenous ADAM17 or HB-EGF restores cerebral arterial tone and blood flow responses, and identify upregulated voltage-dependent potassium channel (KV) number in cerebral arterial myocytes as a heretofore-unrecognized downstream effector of TIMP3-induced deficits. These results support the concept that the balance of TIMP3 and ADAM17 activity modulates CBF through regulation of myocyte KV channel number.

Article and author information

Author details

  1. Carmen Capone

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabrice Dabertrand

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Celine Baron-Menguy

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Athena Chalaris

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lamia Ghezali

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valérie Domenga-Denier

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefanie Schmidt

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Clément Huneau

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Rose-John

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark T Nelson

    Department of Pharmacology, University of Vermont, University of Manchester, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anne Joutel

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    For correspondence
    anne.joutel@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3963-3860

Funding

Agence Nationale de la Recherche (ANR Genopath 2009-RAE09011HSA and ANR Blanc 2010-RPV11011HHA)

  • Anne Joutel

Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain)

  • Mark T Nelson
  • Anne Joutel

European Union (Horizon 2020 research and innovation programme SVDs@target, grant agreement No 666881)

  • Mark T Nelson
  • Anne Joutel

National Institute of Health (R37DK053832, PO1HL095488, RO1HL44455, R01HL121706, R01HL131181)

  • Mark T Nelson

Totman Medical Research Trust

  • Mark T Nelson

United Leukodystrophy Foundation (CADASIL Research Grant)

  • Fabrice Dabertrand

Deutsche Forschungsgemeinschaft (DFG, SFB877 project A1 and the Cluster of Excellence Inflammation at Interfaces)

  • Athena Chalaris
  • Stefan Rose-John

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in full accordance with the French guidelines for the use of animals in research and were approved by the "Lariboisière-Villemin" Institutional Animal Care and Use Committee (C2EA 09), with every effort made to minimize the number of animals used.

Copyright

© 2016, Capone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,882
    views
  • 428
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel
(2016)
Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics
eLife 5:e17536.
https://doi.org/10.7554/eLife.17536

Share this article

https://doi.org/10.7554/eLife.17536

Further reading

    1. Neuroscience
    Giordano de Guglielmo, Lieselot Carrette ... Olivier George
    Research Article

    Addiction is commonly characterized by escalation of drug intake, compulsive drug seeking, and continued use despite harmful consequences. However, the factors contributing to the transition from moderate drug use to these problematic patterns remain unclear, particularly regarding the role of sex. Many preclinical studies have been limited by small sample sizes, low genetic diversity, and restricted drug access, making it challenging to model significant levels of intoxication or dependence and translate findings to humans. To address these limitations, we characterized addiction-like behaviors in a large sample of >500 outbred heterogeneous stock (HS) rats using an extended cocaine self-administration paradigm (6 hr/daily). We analyzed individual differences in escalation of intake, progressive ratio (PR) responding, continued use despite adverse consequences (contingent foot shocks), and irritability-like behavior during withdrawal. Principal component analysis showed that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto a single factor that was distinct from irritability-like behaviors. Categorizing rats into resilient, mild, moderate, and severe addiction-like phenotypes showed that females exhibited higher addiction-like behaviors, with a lower proportion of resilient individuals compared to males. These findings suggest that, in genetically diverse rats with extended drug access, escalation of intake, continued use despite adverse consequences, and PR responding are highly correlated measures of a shared underlying construct. Furthermore, our results highlight sex differences in resilience to addiction-like behaviors.

    1. Neuroscience
    Tingting Li, Wenwen Shi ... Yong Q Zhang
    Research Article

    Traumatic brain injury (TBI) caused by external mechanical forces is a major health burden worldwide, but the underlying mechanism in glia remains largely unclear. We report herein that Drosophila adults exhibit a defective blood–brain barrier, elevated innate immune responses, and astrocyte swelling upon consecutive strikes with a high-impact trauma device. RNA sequencing (RNA-seq) analysis of these astrocytes revealed upregulated expression of genes encoding PDGF and VEGF receptor-related (Pvr, a receptor tyrosine kinase), adaptor protein complex 1 (AP-1, a transcription factor complex of the c-Jun N-terminal kinase pathway) composed of Jun-related antigen (Jra) and kayak (kay), and matrix metalloproteinase 1 (Mmp1) following TBI. Interestingly, Pvr is both required and sufficient for AP-1 and Mmp1 upregulation, while knockdown of AP-1 expression in the background of Pvr overexpression in astrocytes rescued Mmp1 upregulation upon TBI, indicating that Pvr acts as the upstream receptor for the downstream AP-1–Mmp1 transduction. Moreover, dynamin-associated endocytosis was found to be an important regulatory step in downregulating Pvr signaling. Our results identify a new Pvr–AP-1–Mmp1 signaling pathway in astrocytes in response to TBI, providing potential targets for developing new therapeutic strategies for TBI.