Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel  Is a corresponding author
  1. INSERM, France
  2. University of Vermont, United States
  3. Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Germany
  4. University of Vermont, University of Manchester, United States

Abstract

Cerebral small vessel disease (SVD) is a leading cause of stroke and dementia. CADASIL, an inherited SVD, alters cerebral artery function, compromising blood flow to the working brain. TIMP3 (tissue inhibitor of metalloproteinase 3) accumulation in the vascular extracellular matrix in CADASIL is a key contributor to cerebrovascular dysfunction. However, the linkage between elevated TIMP3 and compromised cerebral blood flow (CBF) remains unknown. Here, we show that TIMP3 acts through inhibition of the metalloprotease ADAM17 and HB-EGF to regulate cerebral arterial tone and blood flow responses. In a clinically relevant CADASIL mouse model, we show that exogenous ADAM17 or HB-EGF restores cerebral arterial tone and blood flow responses, and identify upregulated voltage-dependent potassium channel (KV) number in cerebral arterial myocytes as a heretofore-unrecognized downstream effector of TIMP3-induced deficits. These results support the concept that the balance of TIMP3 and ADAM17 activity modulates CBF through regulation of myocyte KV channel number.

Article and author information

Author details

  1. Carmen Capone

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabrice Dabertrand

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Celine Baron-Menguy

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Athena Chalaris

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lamia Ghezali

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valérie Domenga-Denier

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefanie Schmidt

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Clément Huneau

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Rose-John

    Molecular Biology of Cytokines, Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark T Nelson

    Department of Pharmacology, University of Vermont, University of Manchester, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anne Joutel

    Genetics and Pathophysiology of Cerebrovascular Diseases, INSERM, Paris, France
    For correspondence
    anne.joutel@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3963-3860

Funding

Agence Nationale de la Recherche (ANR Genopath 2009-RAE09011HSA and ANR Blanc 2010-RPV11011HHA)

  • Anne Joutel

Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain)

  • Mark T Nelson
  • Anne Joutel

European Union (Horizon 2020 research and innovation programme SVDs@target, grant agreement No 666881)

  • Mark T Nelson
  • Anne Joutel

National Institute of Health (R37DK053832, PO1HL095488, RO1HL44455, R01HL121706, R01HL131181)

  • Mark T Nelson

Totman Medical Research Trust

  • Mark T Nelson

United Leukodystrophy Foundation (CADASIL Research Grant)

  • Fabrice Dabertrand

Deutsche Forschungsgemeinschaft (DFG, SFB877 project A1 and the Cluster of Excellence Inflammation at Interfaces)

  • Athena Chalaris
  • Stefan Rose-John

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in full accordance with the French guidelines for the use of animals in research and were approved by the "Lariboisière-Villemin" Institutional Animal Care and Use Committee (C2EA 09), with every effort made to minimize the number of animals used.

Copyright

© 2016, Capone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,884
    views
  • 428
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Capone
  2. Fabrice Dabertrand
  3. Celine Baron-Menguy
  4. Athena Chalaris
  5. Lamia Ghezali
  6. Valérie Domenga-Denier
  7. Stefanie Schmidt
  8. Clément Huneau
  9. Stefan Rose-John
  10. Mark T Nelson
  11. Anne Joutel
(2016)
Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics
eLife 5:e17536.
https://doi.org/10.7554/eLife.17536

Share this article

https://doi.org/10.7554/eLife.17536

Further reading

    1. Neuroscience
    Friedrich Schuessler, Francesca Mastrogiuseppe ... Omri Barak
    Research Article

    The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network’s output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.