Thrombospondin expression in myofibers stabilizes muscle membranes

  1. Davy Vanhoutte
  2. Tobias G Schips
  3. Jennifer Q Kwong
  4. Jennifer Davis
  5. Andoria Tjondrokoesoemo
  6. Matthew J Brody
  7. Michelle A Sargent
  8. Onur Kanisicak
  9. Hong Yi
  10. Quan Q Gao
  11. Joseph E Rabinowitz
  12. Talila Volk
  13. Elizabeth M McNally
  14. Jeffery D Molkentin  Is a corresponding author
  1. University of Cincinnati, United States
  2. Emory University, United States
  3. Northwestern University, United States
  4. Temple University School of Medicine, United States
  5. Weizmann Institute of Science, Israel

Abstract

Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of βPS integrin. This functional conservation emphasizes the fundamental importance of Thbs' as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy.

Article and author information

Author details

  1. Davy Vanhoutte

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8147-6953
  2. Tobias G Schips

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Q Kwong

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Davis

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andoria Tjondrokoesoemo

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew J Brody

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michelle A Sargent

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Onur Kanisicak

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hong Yi

    Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Quan Q Gao

    Center for Genetic Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Joseph E Rabinowitz

    Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Talila Volk

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Elizabeth M McNally

    Center for Genetic Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jeffery D Molkentin

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    For correspondence
    jeff.Molkentin@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3558-6529

Funding

Howard Hughes Medical Institute (Molkentin)

  • Jeffery D Molkentin

National Institutes of Health (award P01NS072027)

  • Jeffery D Molkentin

National Institutes of Health (award R01HL105924)

  • Jeffery D Molkentin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee of the Cincinnati Children's Hospital Medical Center (Protocol# IACUC2013-0013). No human subjects or human tissue was directly used in experiments in this study.

Copyright

© 2016, Vanhoutte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,435
    views
  • 647
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davy Vanhoutte
  2. Tobias G Schips
  3. Jennifer Q Kwong
  4. Jennifer Davis
  5. Andoria Tjondrokoesoemo
  6. Matthew J Brody
  7. Michelle A Sargent
  8. Onur Kanisicak
  9. Hong Yi
  10. Quan Q Gao
  11. Joseph E Rabinowitz
  12. Talila Volk
  13. Elizabeth M McNally
  14. Jeffery D Molkentin
(2016)
Thrombospondin expression in myofibers stabilizes muscle membranes
eLife 5:e17589.
https://doi.org/10.7554/eLife.17589

Share this article

https://doi.org/10.7554/eLife.17589

Further reading

    1. Cell Biology
    Alexandra M Fister, Adam Horn ... Anna Huttenlocher
    Research Article

    Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.