Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses

  1. Jialong Yang
  2. Xingguang Lin
  3. Yun Pan
  4. Jinli Wang
  5. Pengcheng Chen
  6. Hongxiang Huang
  7. Hai-Hui Xue
  8. Jimin Gao
  9. Xiao-Ping Zhong  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Wenzhou Medical University, China
  3. University of Iowa, United States

Abstract

T Follicular helper T (Tfh) cells play critical roles for germinal center responses and effective humoral immunity. We report here that mTOR in CD4 T cells is essential for Tfh differentiation. In Mtorf/f-Cd4Cre mice, both constitutive and inducible Tfh differentiation is severely impaired, leading to defective germinal center B cell formation and antibody production. Moreover, both mTORC1 and mTORC2 contribute to Tfh and GC B cell development but may do so via distinct mechanisms. mTORC1 mainly promotes CD4 T cell proliferation to reach the cell divisions necessary for Tfh differentiation, while Rictor/mTORC2 regulates Tfh differentiation by promoting Akt activation and TCF1 expression without grossly influencing T cell proliferation. Together, our results reveal crucial but distinct roles for mTORC1 and mTORC2 in CD4 T cells during Tfh differentiation and germinal center responses.

Article and author information

Author details

  1. Jialong Yang

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xingguang Lin

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yun Pan

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinli Wang

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Pengcheng Chen

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongxiang Huang

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hai-Hui Xue

    Department of Microbiology, University of Iowa, Iowa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jimin Gao

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiao-Ping Zhong

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    For correspondence
    xiaoping.zhong@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4619-8783

Funding

National Institutes of Health (R01AI079088)

  • Xiao-Ping Zhong

National Institutes of Health (R01AI101206)

  • Xiao-Ping Zhong

National Institutes of Health (R01AI112579)

  • Hai-Hui Xue

National Institutes of Health (R01AI115149)

  • Hai-Hui Xue

National Institutes of Health (R01AI119160)

  • Hai-Hui Xue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols A051-16-03 and A095-13-04) of Duke University.

Copyright

© 2016, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,792
    views
  • 787
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jialong Yang
  2. Xingguang Lin
  3. Yun Pan
  4. Jinli Wang
  5. Pengcheng Chen
  6. Hongxiang Huang
  7. Hai-Hui Xue
  8. Jimin Gao
  9. Xiao-Ping Zhong
(2016)
Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses
eLife 5:e17936.
https://doi.org/10.7554/eLife.17936

Share this article

https://doi.org/10.7554/eLife.17936

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.