Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses

  1. Jialong Yang
  2. Xingguang Lin
  3. Yun Pan
  4. Jinli Wang
  5. Pengcheng Chen
  6. Hongxiang Huang
  7. Hai-Hui Xue
  8. Jimin Gao
  9. Xiao-Ping Zhong  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Wenzhou Medical University, China
  3. University of Iowa, United States

Abstract

T Follicular helper T (Tfh) cells play critical roles for germinal center responses and effective humoral immunity. We report here that mTOR in CD4 T cells is essential for Tfh differentiation. In Mtorf/f-Cd4Cre mice, both constitutive and inducible Tfh differentiation is severely impaired, leading to defective germinal center B cell formation and antibody production. Moreover, both mTORC1 and mTORC2 contribute to Tfh and GC B cell development but may do so via distinct mechanisms. mTORC1 mainly promotes CD4 T cell proliferation to reach the cell divisions necessary for Tfh differentiation, while Rictor/mTORC2 regulates Tfh differentiation by promoting Akt activation and TCF1 expression without grossly influencing T cell proliferation. Together, our results reveal crucial but distinct roles for mTORC1 and mTORC2 in CD4 T cells during Tfh differentiation and germinal center responses.

Article and author information

Author details

  1. Jialong Yang

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xingguang Lin

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yun Pan

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinli Wang

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Pengcheng Chen

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongxiang Huang

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hai-Hui Xue

    Department of Microbiology, University of Iowa, Iowa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jimin Gao

    School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiao-Ping Zhong

    Department of Pediatrics, Duke University Medical Center, Durham, United States
    For correspondence
    xiaoping.zhong@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4619-8783

Funding

National Institutes of Health (R01AI079088)

  • Xiao-Ping Zhong

National Institutes of Health (R01AI101206)

  • Xiao-Ping Zhong

National Institutes of Health (R01AI112579)

  • Hai-Hui Xue

National Institutes of Health (R01AI115149)

  • Hai-Hui Xue

National Institutes of Health (R01AI119160)

  • Hai-Hui Xue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols A051-16-03 and A095-13-04) of Duke University.

Copyright

© 2016, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,723
    views
  • 779
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jialong Yang
  2. Xingguang Lin
  3. Yun Pan
  4. Jinli Wang
  5. Pengcheng Chen
  6. Hongxiang Huang
  7. Hai-Hui Xue
  8. Jimin Gao
  9. Xiao-Ping Zhong
(2016)
Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses
eLife 5:e17936.
https://doi.org/10.7554/eLife.17936

Share this article

https://doi.org/10.7554/eLife.17936

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.