1. Structural Biology and Molecular Biophysics
Download icon

The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel

  1. Juan Zhao
  2. Rikard Blunck  Is a corresponding author
  1. Université de Montréal, Canada
Research Article
  • Cited 29
  • Views 2,155
  • Annotations
Cite this article as: eLife 2016;5:e18130 doi: 10.7554/eLife.18130

Abstract

Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the 4th transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.

Article and author information

Author details

  1. Juan Zhao

    Departments of Physics and of Physiology, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Rikard Blunck

    Departments of Physics and of Physiology, Université de Montréal, Montréal, Canada
    For correspondence
    rikard.blunck@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4484-2907

Funding

Canadian Institutes of Health Research (MOP-136894)

  • Rikard Blunck

Natural Sciences and Engineering Research Council of Canada (DG- 327201-2012)

  • Rikard Blunck

Canadian Institutes of Health Research (MOP-102689)

  • Rikard Blunck

Natural Sciences and Engineering Research Council of Canada (CDMC-CREATE postdoctoral fellowship)

  • Juan Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the guidelines of the CDEA of Université de Montréal (licence No. 16-033).

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Publication history

  1. Received: May 24, 2016
  2. Accepted: September 30, 2016
  3. Accepted Manuscript published: October 6, 2016 (version 1)
  4. Version of Record published: November 2, 2016 (version 2)

Copyright

© 2016, Zhao & Blunck

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,155
    Page views
  • 543
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Michael F Priest et al.
    Research Article Updated

    Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole–Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP).

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yongjian Huang et al.
    Research Article

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.