1. Neuroscience
Download icon

Transformation of temporal sequences in the zebra finch auditory system

  1. Yoonseob Lim
  2. Ryan Lagoy
  3. Barbara G Shinn-Cunningham
  4. Timothy J Gardner  Is a corresponding author
  1. Boston University, United States
Research Article
  • Cited 8
  • Views 1,480
  • Annotations
Cite this article as: eLife 2016;5:e18205 doi: 10.7554/eLife.18205

Abstract

This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamo-recipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11-40ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or 'spatial codes,' and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds.

Article and author information

Author details

  1. Yoonseob Lim

    Department of Cognitive and Neural Systems, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Ryan Lagoy

    Department of Electrical and Computer Engineering, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  3. Barbara G Shinn-Cunningham

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    Barbara G Shinn-Cunningham, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5096-5914
  4. Timothy J Gardner

    Department of Biology, Boston University, Boston, United States
    For correspondence
    timothyg@bu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1744-3970

Funding

National Science Foundation (NSF OMA-0835976)

  • Barbara G Shinn-Cunningham
  • Timothy J Gardner

National Institutes of Health (NIH R01NS089679)

  • Timothy J Gardner

National Research Council of Science and Technology grant by Korea Government (CRC-15-04-KIST)

  • Yoonseob Lim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (Protocol Number: 11-027) of the Boston University, operating under AALAC registration 000197, OLAW assurance A3316-01 and USDA 14-R-0017. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Jennifer L Raymond, Stanford University, United States

Publication history

  1. Received: May 26, 2016
  2. Accepted: November 22, 2016
  3. Accepted Manuscript published: November 29, 2016 (version 1)
  4. Version of Record published: December 16, 2016 (version 2)

Copyright

© 2016, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,480
    Page views
  • 323
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Kara A Fulton, Kevin L Briggman
    Tools and Resources

    A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.

    1. Neuroscience
    Alexa Pichet Binette et al.
    Research Article

    Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focussed on free-water corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.