Transformation of temporal sequences in the zebra finch auditory system

Abstract

This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamo-recipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11-40ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or 'spatial codes,' and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds.

Article and author information

Author details

  1. Yoonseob Lim

    Department of Cognitive and Neural Systems, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Ryan Lagoy

    Department of Electrical and Computer Engineering, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  3. Barbara G Shinn-Cunningham

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    Barbara G Shinn-Cunningham, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5096-5914
  4. Timothy J Gardner

    Department of Biology, Boston University, Boston, United States
    For correspondence
    timothyg@bu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1744-3970

Funding

National Science Foundation (NSF OMA-0835976)

  • Barbara G Shinn-Cunningham
  • Timothy J Gardner

National Institutes of Health (NIH R01NS089679)

  • Timothy J Gardner

National Research Council of Science and Technology grant by Korea Government (CRC-15-04-KIST)

  • Yoonseob Lim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer L Raymond, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (Protocol Number: 11-027) of the Boston University, operating under AALAC registration 000197, OLAW assurance A3316-01 and USDA 14-R-0017. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: May 26, 2016
  2. Accepted: November 22, 2016
  3. Accepted Manuscript published: November 29, 2016 (version 1)
  4. Version of Record published: December 16, 2016 (version 2)

Copyright

© 2016, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,805
    views
  • 370
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoonseob Lim
  2. Ryan Lagoy
  3. Barbara G Shinn-Cunningham
  4. Timothy J Gardner
(2016)
Transformation of temporal sequences in the zebra finch auditory system
eLife 5:e18205.
https://doi.org/10.7554/eLife.18205

Share this article

https://doi.org/10.7554/eLife.18205

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.