Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

  1. Jordan G McCall
  2. Edward R Siuda
  3. Dionnet L Bhatti
  4. Lamley A Lawson
  5. Zoe A McElligott
  6. Garret D Stuber
  7. Michael R Bruchas  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of North Carolina, United States

Abstract

Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

Article and author information

Author details

  1. Jordan G McCall

    Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8295-0664
  2. Edward R Siuda

    Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Dionnet L Bhatti

    Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Lamley A Lawson

    Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  5. Zoe A McElligott

    Department of Psychiatry, University of North Carolina, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  6. Garret D Stuber

    Department of Psychiatry, University of North Carolina, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  7. Michael R Bruchas

    Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
    For correspondence
    bruchasm@wustl.edu
    Competing interests
    Michael R Bruchas, Michael R. Bruchas, PhD is a co-founder of Neurolux, Inc, a company that is making wireless optogenetic and various neuroscience-related probes. None of the work in this manuscript used these devices or is related to any of the company's activities, but we list this information here in full disclosure..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-7816

Funding

National Institute on Drug Abuse (DA035144)

  • Michael R Bruchas

McDonnell Center for Systems Neuroscience

  • Michael R Bruchas

National Institute of Mental Health (MH101956)

  • Jordan G. McCall

Washington University in St. Louis

  • Jordan G. McCall
  • Edward R Siuda

National Institute on Alcohol Abuse and Alcoholism (AA023555)

  • Zoe A McElligott

Alcohol Beverage Medical Research Foundation

  • Zoe A McElligott

National Institute of Mental Health (MH112355)

  • Michael R Bruchas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols at Washington University in St. Louis. The protocol was approved by the Animal Studies Committee at Washington University in St. Louis (Protocol Number: 20130219; expiration date: 15/10/2016). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, McCall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,738
    views
  • 1,858
    downloads
  • 226
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan G McCall
  2. Edward R Siuda
  3. Dionnet L Bhatti
  4. Lamley A Lawson
  5. Zoe A McElligott
  6. Garret D Stuber
  7. Michael R Bruchas
(2017)
Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior
eLife 6:e18247.
https://doi.org/10.7554/eLife.18247

Share this article

https://doi.org/10.7554/eLife.18247

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.