Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

  1. Kaycey Pearce
  2. Diancai Cai
  3. Adam C Roberts
  4. David L Glanzman  Is a corresponding author
  1. Univeristy of California, Los Angeles, United States

Abstract

Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report thatLTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation.

Article and author information

Author details

  1. Kaycey Pearce

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diancai Cai

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam C Roberts

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David L Glanzman

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    For correspondence
    glanzman@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5479-0245

Funding

National Institute of Neurological Disorders and Stroke (NIH R01 NS029563)

  • David L Glanzman

National Institute of Mental Health (NIH R01 MH096120)

  • David L Glanzman

National Science Foundation (IOS 1121690)

  • David L Glanzman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: June 1, 2016
  2. Accepted: January 7, 2017
  3. Accepted Manuscript published: January 9, 2017 (version 1)
  4. Accepted Manuscript updated: January 10, 2017 (version 2)
  5. Version of Record published: February 15, 2017 (version 3)

Copyright

© 2017, Pearce et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,970
    Page views
  • 514
    Downloads
  • 60
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kaycey Pearce
  2. Diancai Cai
  3. Adam C Roberts
  4. David L Glanzman
(2017)
Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia
eLife 6:e18299.
https://doi.org/10.7554/eLife.18299

Share this article

https://doi.org/10.7554/eLife.18299

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.