Asymmetric effects of activating and inactivating cortical interneurons

  1. Elizabeth AK Phillips
  2. Andrea R Hasenstaub  Is a corresponding author
  1. University of California San Francisco, United States

Abstract

Bidirectional manipulations-activation and inactivation-are widely used to identify the functions supported by specific cortical interneuron types. Implicit in much of this work is the notion that tonic activation and inactivation will both produce valid, internally consistent insights into interneurons' computational roles. Here, using single-unit recordings in auditory cortex of awake mice, we show that this may not generally hold true. Optogenetically manipulating somatostatin-positive (Sst+) or parvalbumin-positive (Pvalb+) interneurons while recording tone-responses showed that Sst+ inactivation increased response gain, while Pvalb+ inactivation weakened tuning and decreased information transfer, implying that these neurons support delineable computational functions. But activating Sst+ and Pvalb+ interneurons revealed no such differences. We used a simple network model to understand this asymmetry, and showed how relatively small changes in key parameters, such as spontaneous activity or strength of the light manipulation, determined whether activation and inactivation would produce consistent or paradoxical conclusions regarding interneurons' computational functions.

Article and author information

Author details

  1. Elizabeth AK Phillips

    Center for Integrative Neuroscience and Coleman Memorial Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea R Hasenstaub

    Center for Integrative Neuroscience and Coleman Memorial Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, United States
    For correspondence
    andrea.hasenstaub@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3998-5073

Funding

Esther A. and Joseph Klingenstein Fund (Klingenstein-Simons Fellowship Award)

  • Andrea R Hasenstaub

John C. and Edward Coleman Memorial Fund

  • Andrea R Hasenstaub

Hearing Research Institute

  • Andrea R Hasenstaub

National Institutes of Health (RO1, DC014101)

  • Andrea R Hasenstaub

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee at the University of California, San Francisco under protocol AN111186.

Copyright

© 2016, Phillips & Hasenstaub

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,161
    views
  • 1,175
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth AK Phillips
  2. Andrea R Hasenstaub
(2016)
Asymmetric effects of activating and inactivating cortical interneurons
eLife 5:e18383.
https://doi.org/10.7554/eLife.18383

Share this article

https://doi.org/10.7554/eLife.18383

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.