1. Structural Biology and Molecular Biophysics
Download icon

Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2

  1. Dari Kimanius
  2. Björn O Forsberg
  3. Sjors HW Scheres  Is a corresponding author
  4. Erik Lindahl  Is a corresponding author
  1. Stockholm University, Sweden
  2. MRC Laboratory of Molecular Biology,, United Kingdom
Tools and Resources
  • Cited 536
  • Views 8,588
  • Annotations
Cite this article as: eLife 2016;5:e18722 doi: 10.7554/eLife.18722
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

By reaching near-atomic resolution for a wide range of specimens, single-particle cryo-EM structure determination is transforming structural biology. However, the necessary calculations come at increased computational costs, introducing a bottleneck that is currently limiting throughput and the development of new methods. Here, we present an implementation of the RELION image processing software that uses graphics processors (GPUs) to address the most computationally intensive steps of its cryo-EM structure determination workflow. Both image classification and high-resolution refinement have been accelerated more than an order-of-magnitude, and template-based particle selection has been accelerated two orders-of-magnitude on desktop hardware. Memory requirements on GPUs have been reduced to fit widely available hardware, and we show that the use of single precision arithmetic does not adversely affect results. This enables high-resolution cryo-EM structure determination in a matter of days on a single workstation.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Scheres SH
    (2014) Beta-galactosidase Falcon-II micrographs plus manually selected coordinates by Richard Henderson
    Publicly available at the EBI Electron Microscopy Pilot Image Archive (accession no: EMPIAR-10017).

Article and author information

Author details

  1. Dari Kimanius

    Department of Biochemistry and Biophysics, Science for Life Laboratory,, Stockholm University, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  2. Björn O Forsberg

    Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Sjors HW Scheres

    MRC Laboratory of Molecular Biology,, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-6540
  4. Erik Lindahl

    Department of Biochemistry and Biophysics, Science for Life Laboratory,, Stockholm University, Stockholm, Sweden
    For correspondence
    erik.lindahl@dbb.su.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2734-2794

Funding

Medical Research Council (MC UP A025 1013)

  • Sjors HW Scheres

Vetenskapsrådet (2013-5901)

  • Erik Lindahl

Horizon 2020 (EINFRA-2015-1-675728)

  • Erik Lindahl

Swedish e-Science Research Centre

  • Erik Lindahl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sriram Subramaniam, National Cancer Institute, United States

Publication history

  1. Received: June 11, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 15, 2016 (version 1)
  4. Version of Record published: February 15, 2017 (version 2)

Copyright

© 2016, Kimanius et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,588
    Page views
  • 1,886
    Downloads
  • 536
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Monica L Fernández-Quintero et al.
    Research Article Updated

    Voltage-gated calcium channels control key functions of excitable cells, like synaptic transmission in neurons and the contraction of heart and skeletal muscles. To accomplish such diverse functions, different calcium channels activate at different voltages and with distinct kinetics. To identify the molecular mechanisms governing specific voltage sensing properties, we combined structure modeling, mutagenesis, and electrophysiology to analyze the structures, free energy, and transition kinetics of the activated and resting states of two functionally distinct voltage sensing domains (VSDs) of the eukaryotic calcium channel CaV1.1. Both VSDs displayed the typical features of the sliding helix model; however, they greatly differed in ion-pair formation of the outer gating charges. Specifically, stabilization of the activated state enhanced the voltage dependence of activation, while stabilization of resting states slowed the kinetics. This mechanism provides a mechanistic model explaining how specific ion-pair formation in separate VSDs can realize the characteristic gating properties of voltage-gated cation channels.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Agata Szuba et al.
    Research Article Updated

    Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.