The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions

  1. Rémi Dumollard  Is a corresponding author
  2. Nicolas Minc
  3. Gregory salez
  4. Sameh ben aicha
  5. Faisal bekkouche
  6. Celine hebras
  7. Lydia besnardeau
  8. Alex McDougall  Is a corresponding author
  1. Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, France
  2. Institut Jacques Monod, UMR7592 CNRS, France

Abstract

The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula.

Article and author information

Author details

  1. Rémi Dumollard

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    For correspondence
    remi.dumollard@obs-vlfr.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-0630
  2. Nicolas Minc

    Institut Jacques Monod, UMR7592 CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory salez

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sameh ben aicha

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Faisal bekkouche

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Celine hebras

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Lydia besnardeau

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex McDougall

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    For correspondence
    dougall@obs-vlfr.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-12-BSV2-0005-02)

  • Rémi Dumollard
  • Celine hebras
  • Lydia besnardeau
  • Alex McDougall

Fondation ARC pour la Recherche sur le Cancer (SFI20111203776)

  • Rémi Dumollard
  • Celine hebras
  • Lydia besnardeau
  • Alex McDougall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Version history

  1. Received: June 30, 2016
  2. Accepted: January 24, 2017
  3. Accepted Manuscript published: January 25, 2017 (version 1)
  4. Version of Record published: February 21, 2017 (version 2)

Copyright

© 2017, Dumollard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,455
    Page views
  • 399
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rémi Dumollard
  2. Nicolas Minc
  3. Gregory salez
  4. Sameh ben aicha
  5. Faisal bekkouche
  6. Celine hebras
  7. Lydia besnardeau
  8. Alex McDougall
(2017)
The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions
eLife 6:e19290.
https://doi.org/10.7554/eLife.19290

Share this article

https://doi.org/10.7554/eLife.19290

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.