The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions

  1. Rémi Dumollard  Is a corresponding author
  2. Nicolas Minc
  3. Gregory salez
  4. Sameh ben aicha
  5. Faisal bekkouche
  6. Celine hebras
  7. Lydia besnardeau
  8. Alex McDougall  Is a corresponding author
  1. Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, France
  2. Institut Jacques Monod, UMR7592 CNRS, France

Abstract

The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula.

Article and author information

Author details

  1. Rémi Dumollard

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    For correspondence
    remi.dumollard@obs-vlfr.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-0630
  2. Nicolas Minc

    Institut Jacques Monod, UMR7592 CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory salez

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sameh ben aicha

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Faisal bekkouche

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Celine hebras

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Lydia besnardeau

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex McDougall

    Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, villefranche sur mer, France
    For correspondence
    dougall@obs-vlfr.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-12-BSV2-0005-02)

  • Rémi Dumollard
  • Celine hebras
  • Lydia besnardeau
  • Alex McDougall

Fondation ARC pour la Recherche sur le Cancer (SFI20111203776)

  • Rémi Dumollard
  • Celine hebras
  • Lydia besnardeau
  • Alex McDougall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Dumollard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,551
    views
  • 407
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rémi Dumollard
  2. Nicolas Minc
  3. Gregory salez
  4. Sameh ben aicha
  5. Faisal bekkouche
  6. Celine hebras
  7. Lydia besnardeau
  8. Alex McDougall
(2017)
The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions
eLife 6:e19290.
https://doi.org/10.7554/eLife.19290

Share this article

https://doi.org/10.7554/eLife.19290

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Developmental Biology
    Jing Wang, Yingying Yin ... Zhaojian Liu
    Research Article

    Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1–TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7−/− mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.