Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

  1. Nicole D Paris
  2. Andrew Soroka
  3. Alanna Klose
  4. Wenxuan Liu
  5. Joe V Chakkalakal  Is a corresponding author
  1. University of Rochester Medical Center, United States

Abstract

Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.

Article and author information

Author details

  1. Nicole D Paris

    Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0654-0983
  2. Andrew Soroka

    Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alanna Klose

    Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenxuan Liu

    Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joe V Chakkalakal

    Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
    For correspondence
    joe_chakkalakal@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8440-7312

Funding

University of Rochester Medical Center (Start-up Funds)

  • Joe V Chakkalakal

National Institutes of Health (R01AG051456)

  • Joe V Chakkalakal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Work with mice was conducted in accordance with protocols approved by the University Committee on Animal Resources, University of Rochester Medical Center (Protocol #101565/2013-002).

Version history

  1. Received: July 11, 2016
  2. Accepted: November 16, 2016
  3. Accepted Manuscript published: November 18, 2016 (version 1)
  4. Version of Record published: December 5, 2016 (version 2)

Copyright

© 2016, Paris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,043
    Page views
  • 518
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole D Paris
  2. Andrew Soroka
  3. Alanna Klose
  4. Wenxuan Liu
  5. Joe V Chakkalakal
(2016)
Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration
eLife 5:e19484.
https://doi.org/10.7554/eLife.19484

Share this article

https://doi.org/10.7554/eLife.19484

Further reading

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.

    1. Stem Cells and Regenerative Medicine
    Shintaro Watanuki, Hiroshi Kobayashi ... Keiyo Takubo
    Research Article

    Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.