Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism
Abstract
Eco-HAB is an open source, RFID-based system for automated measurement and analysis of social preference and in-cohort sociability in mice. The system closely follows murine ethology. It requires no contact between a human experimenter and tested animals, overcoming the confounding factors that lead to irreproducible assessment of murine social behavior between laboratories. In Eco-HAB, group-housed animals live in a spacious, four-compartment apparatus with shadowed areas and narrow tunnels, resembling natural burrows. Eco-HAB allows for assessment of the tendency of mice to voluntarily spend time together in ethologically relevant mouse group sizes. Custom-made software for automated tracking, data extraction, and analysis enables quick evaluation of social impairments. The developed protocols and standardized behavioral measures demonstrate high replicability. Unlike classic three-chambered sociability tests, Eco-HAB provides measurements of spontaneous, ecologically relevant social behaviors in group-housed animals. Results are obtained faster, with less manpower, and without confounding factors.
Article and author information
Author details
Funding
Swiss Contribution to the enlarged European Union (PSPB-210)
- Alicja Puścian
- Hans-Peter Lipp
- Ewelina Knapska
National Science Center (2013/08/W/NZ4/00691)
- Szymon Łęski
- Grzegorz Kasprowicz
- Ewelina Knapska
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animals were treated in accordance with the ethical standards of the European Union (directive no. 2010/63/UE) and Polish regulations. All experimental procedures were pre-approved by the Local Ethics Committee.
Reviewing Editor
- Peggy Mason, University of Chicago, United States
Version history
- Received: July 12, 2016
- Accepted: October 11, 2016
- Accepted Manuscript published: October 12, 2016 (version 1)
- Version of Record published: November 2, 2016 (version 2)
Copyright
© 2016, Puścian et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,939
- Page views
-
- 494
- Downloads
-
- 27
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The computational principles underlying attention allocation in complex goal-directed tasks remain elusive. Goal-directed reading, that is, reading a passage to answer a question in mind, is a common real-world task that strongly engages attention. Here, we investigate what computational models can explain attention distribution in this complex task. We show that the reading time on each word is predicted by the attention weights in transformer-based deep neural networks (DNNs) optimized to perform the same reading task. Eye tracking further reveals that readers separately attend to basic text features and question-relevant information during first-pass reading and rereading, respectively. Similarly, text features and question relevance separately modulate attention weights in shallow and deep DNN layers. Furthermore, when readers scan a passage without a question in mind, their reading time is predicted by DNNs optimized for a word prediction task. Therefore, we offer a computational account of how task optimization modulates attention distribution during real-world reading.
-
- Neuroscience
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.