1. Neuroscience
Download icon

Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off

  1. Verónica María Corrales-Carvajal
  2. Aldo A Faisal
  3. Carlos Ribeiro  Is a corresponding author
  1. Champalimaud Centre for the Unknown, Portugal
  2. Imperial College London, United Kingdom
Research Article
  • Cited 43
  • Views 3,243
  • Annotations
Cite this article as: eLife 2016;5:e19920 doi: 10.7554/eLife.19920


Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient-deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection.

Article and author information

Author details

  1. Verónica María Corrales-Carvajal

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3813-5790
  2. Aldo A Faisal

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Ribeiro

    Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9542-7335


Fundação para a Ciência e a Tecnologia (PTDC/BIA-BCM/118684/2010)

  • Carlos Ribeiro

Human Frontier Science Program (RGP0022/2012)

  • Aldo A Faisal
  • Carlos Ribeiro

Champalimaud Foundation

  • Verónica María Corrales-Carvajal
  • Carlos Ribeiro

Fundação para a Ciência e a Tecnologia (Graduate Student Fellowship, SFRH/BD/51113/2010)

  • Verónica María Corrales-Carvajal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Iain D Couzin, Max Planck Institute for Ornithology, Germany

Publication history

  1. Received: July 22, 2016
  2. Accepted: October 20, 2016
  3. Accepted Manuscript published: October 22, 2016 (version 1)
  4. Accepted Manuscript updated: October 24, 2016 (version 2)
  5. Version of Record published: November 14, 2016 (version 3)


© 2016, Corrales-Carvajal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 3,243
    Page views
  • 766
  • 43

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Rendong Tang et al.
    Research Article Updated

    Neurons in primate V4 exhibit various types of selectivity for contour shapes, including curves, angles, and simple shapes. How are these neurons organized in V4 remains unclear. Using intrinsic signal optical imaging and two-photon calcium imaging, we observed submillimeter functional domains in V4 that contained neurons preferring curved contours over rectilinear ones. These curvature domains had similar sizes and response amplitudes as orientation domains but tended to separate from these regions. Within the curvature domains, neurons that preferred circles or curve orientations clustered further into finer scale subdomains. Nevertheless, individual neurons also had a wide range of contour selectivity, and neighboring neurons exhibited a substantial diversity in shape tuning besides their common shape preferences. In strong contrast to V4, V1 and V2 did not have such contour-shape-related domains. These findings highlight the importance and complexity of curvature processing in visual object recognition and the key functional role of V4 in this process.

    1. Neuroscience
    James Peak et al.
    Research Article Updated

    The posterior dorsomedial striatum (pDMS) is necessary for goal-directed action; however, the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such actions remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action in rats and found that whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.