Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm

  1. Elliot A Perens
  2. Zayra V Garavito-Aguilar
  3. Gina P Guio-Vega
  4. Karen T Peña
  5. Yocheved L Schindler
  6. Deborah Yelon  Is a corresponding author
  1. University of California, San Diego, United States
  2. Universidad de los Andes, Colombia

Abstract

Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.

Article and author information

Author details

  1. Elliot A Perens

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zayra V Garavito-Aguilar

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5671-7017
  3. Gina P Guio-Vega

    Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  4. Karen T Peña

    Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yocheved L Schindler

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah Yelon

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    dyelon@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3523-4053

Funding

National Institutes of Health (R01HL069594 and R01HL108599)

  • Deborah Yelon

March of Dimes Foundation (1-FY16-257)

  • Deborah Yelon

California Institute for Regenerative Medicine (TG2-01154)

  • Elliot A Perens

A.P. Giannini Foundation (Postdoctoral Fellowship)

  • Elliot A Perens

Universidad de los Andes (FAPA)

  • Zayra V Garavito-Aguilar

Vicerrectoria de Investigaciones (P14.160422.007/01)

  • Zayra V Garavito-Aguilar

Colciencias Convocatoria (617-2013-Joven Investigador Fellowship)

  • Karen T Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier Y R Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: All zebrafish work followed protocols (S09125) approved by the University of California, San Diego IACUC.

Version history

  1. Received: July 22, 2016
  2. Accepted: November 1, 2016
  3. Accepted Manuscript published: November 2, 2016 (version 1)
  4. Version of Record published: December 1, 2016 (version 2)
  5. Version of Record updated: May 10, 2018 (version 3)

Copyright

© 2016, Perens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,720
    Page views
  • 539
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elliot A Perens
  2. Zayra V Garavito-Aguilar
  3. Gina P Guio-Vega
  4. Karen T Peña
  5. Yocheved L Schindler
  6. Deborah Yelon
(2016)
Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm
eLife 5:e19941.
https://doi.org/10.7554/eLife.19941

Share this article

https://doi.org/10.7554/eLife.19941

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.