Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm

  1. Elliot A Perens
  2. Zayra V Garavito-Aguilar
  3. Gina P Guio-Vega
  4. Karen T Peña
  5. Yocheved L Schindler
  6. Deborah Yelon  Is a corresponding author
  1. University of California, San Diego, United States
  2. Universidad de los Andes, Colombia

Abstract

Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.

Article and author information

Author details

  1. Elliot A Perens

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zayra V Garavito-Aguilar

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5671-7017
  3. Gina P Guio-Vega

    Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  4. Karen T Peña

    Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yocheved L Schindler

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah Yelon

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    dyelon@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3523-4053

Funding

National Institutes of Health (R01HL069594 and R01HL108599)

  • Deborah Yelon

March of Dimes Foundation (1-FY16-257)

  • Deborah Yelon

California Institute for Regenerative Medicine (TG2-01154)

  • Elliot A Perens

A.P. Giannini Foundation (Postdoctoral Fellowship)

  • Elliot A Perens

Universidad de los Andes (FAPA)

  • Zayra V Garavito-Aguilar

Vicerrectoria de Investigaciones (P14.160422.007/01)

  • Zayra V Garavito-Aguilar

Colciencias Convocatoria (617-2013-Joven Investigador Fellowship)

  • Karen T Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier Y R Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: All zebrafish work followed protocols (S09125) approved by the University of California, San Diego IACUC.

Version history

  1. Received: July 22, 2016
  2. Accepted: November 1, 2016
  3. Accepted Manuscript published: November 2, 2016 (version 1)
  4. Version of Record published: December 1, 2016 (version 2)
  5. Version of Record updated: May 10, 2018 (version 3)

Copyright

© 2016, Perens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,718
    Page views
  • 539
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elliot A Perens
  2. Zayra V Garavito-Aguilar
  3. Gina P Guio-Vega
  4. Karen T Peña
  5. Yocheved L Schindler
  6. Deborah Yelon
(2016)
Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm
eLife 5:e19941.
https://doi.org/10.7554/eLife.19941

Share this article

https://doi.org/10.7554/eLife.19941

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.