MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders

  1. Adam J Harrington
  2. Aram Raissi
  3. Kacey Rajkovich
  4. Stefano Berto
  5. Jaswinder Kumar
  6. Gemma Molinaro
  7. Jonathan Raduazzo
  8. Yuhong Guo
  9. Kris Loerwald
  10. Genevieve Konopka
  11. Kimberly M Huber
  12. Christopher W Cowan  Is a corresponding author
  1. Medical University of South Carolina, United States
  2. Harvard Medical School, United States
  3. The University of Texas Southwestern Medical Center, United States

Abstract

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Adam J Harrington

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aram Raissi

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kacey Rajkovich

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefano Berto

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jaswinder Kumar

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gemma Molinaro

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan Raduazzo

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuhong Guo

    Department of Psychiatry, Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kris Loerwald

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Genevieve Konopka

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kimberly M Huber

    Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Christopher W Cowan

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    For correspondence
    cowanc@musc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5472-3296

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development

  • Adam J Harrington

Simons Foundation (SFARI #206919)

  • Kimberly M Huber
  • Christopher W Cowan

National Institute on Drug Abuse

  • Christopher W Cowan

NIH Office of the Director

  • Kimberly M Huber

National Institutes of Health (F32 HD078050)

  • Adam J Harrington

National Institutes of Health (DA027664)

  • Christopher W Cowan

National Institutes of Health (HD052731)

  • Kimberly M Huber

National Institutes of Health (OD010737)

  • Christopher W Cowan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2015N000178 and #2015N000160) of McLean Hospital.

Copyright

© 2016, Harrington et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,463
    views
  • 1,182
    downloads
  • 168
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam J Harrington
  2. Aram Raissi
  3. Kacey Rajkovich
  4. Stefano Berto
  5. Jaswinder Kumar
  6. Gemma Molinaro
  7. Jonathan Raduazzo
  8. Yuhong Guo
  9. Kris Loerwald
  10. Genevieve Konopka
  11. Kimberly M Huber
  12. Christopher W Cowan
(2016)
MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders
eLife 5:e20059.
https://doi.org/10.7554/eLife.20059

Share this article

https://doi.org/10.7554/eLife.20059

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.