Sparse activity of identified dentate granule cells during spatial exploration

  1. Maria Diamantaki
  2. Markus Frey
  3. Philipp Berens
  4. Patricia Preston-Ferrer  Is a corresponding author
  5. Andrea Burgalossi  Is a corresponding author
  1. Werner-Reichardt Centre for Integrative Neuroscience, Germany

Abstract

In the dentate gyrus - a key component of spatial memory circuits - granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure-function relationships, we juxtacellularly recorded and labeled single GCs in freely-moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population.

Article and author information

Author details

  1. Maria Diamantaki

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Markus Frey

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Berens

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-4727
  4. Patricia Preston-Ferrer

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    For correspondence
    patricia.preston@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Burgalossi

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    For correspondence
    andrea.burgalossi@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0039-3599

Funding

Deutsche Forschungsgemeinschaft (EXC 307)

  • Maria Diamantaki
  • Markus Frey
  • Philipp Berens
  • Patricia Preston-Ferrer
  • Andrea Burgalossi

Bundesministerium für Bildung und Forschung (FKZ 01GQ1601)

  • Philipp Berens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed according to the German guidelines on animal welfare and approved by the local institution in charge of experiments using animals (Regierungspraesidium Tuebingen, permit numbers CIN2/14, CIN/5/14 and CIN/814).

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Version history

  1. Received: August 3, 2016
  2. Accepted: October 1, 2016
  3. Accepted Manuscript published: October 3, 2016 (version 1)
  4. Accepted Manuscript updated: October 5, 2016 (version 2)
  5. Version of Record published: October 24, 2016 (version 3)
  6. Version of Record updated: November 3, 2016 (version 4)

Copyright

© 2016, Diamantaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,518
    Page views
  • 766
    Downloads
  • 92
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Diamantaki
  2. Markus Frey
  3. Philipp Berens
  4. Patricia Preston-Ferrer
  5. Andrea Burgalossi
(2016)
Sparse activity of identified dentate granule cells during spatial exploration
eLife 5:e20252.
https://doi.org/10.7554/eLife.20252

Share this article

https://doi.org/10.7554/eLife.20252

Further reading

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.

    1. Neuroscience
    Simon Lui, Ashleigh K Brink, Laura H Corbit
    Research Article

    Extinction is a specific example of learning where a previously reinforced stimulus or response is no longer reinforced, and the previously learned behaviour is no longer necessary and must be modified. Current theories suggest extinction is not the erasure of the original learning but involves new learning that acts to suppress the original behaviour. Evidence for this can be found when the original behaviour recovers following the passage of time (spontaneous recovery) or reintroduction of the reinforcement (i.e. reinstatement). Recent studies have shown that pharmacological manipulation of noradrenaline (NA) or its receptors can influence appetitive extinction; however, the role and source of endogenous NA in these effects are unknown. Here, we examined the role of the locus coeruleus (LC) in appetitive extinction. Specifically, we tested whether optogenetic stimulation of LC neurons during extinction of a food-seeking behaviour would enhance extinction evidenced by reduced spontaneous recovery in future tests. LC stimulation during extinction trials did not change the rate of extinction but did serve to reduce subsequent spontaneous recovery, suggesting that stimulation of the LC can augment reward-related extinction. Optogenetic inhibition of the LC during extinction trials reduced responding during the trials where it was applied, but no long-lasting changes in the retention of extinction were observed. Since not all LC cells expressed halorhodopsin, it is possible that more complete LC inhibition or pathway-specific targeting would be more effective at suppressing extinction learning. These results provide further insight into the neural basis of appetitive extinction, and in particular the role of the LC. A deeper understanding of the physiological bases of extinction can aid development of more effective extinction-based therapies.