Sparse activity of identified dentate granule cells during spatial exploration

  1. Maria Diamantaki
  2. Markus Frey
  3. Philipp Berens
  4. Patricia Preston-Ferrer  Is a corresponding author
  5. Andrea Burgalossi  Is a corresponding author
  1. Werner-Reichardt Centre for Integrative Neuroscience, Germany

Abstract

In the dentate gyrus - a key component of spatial memory circuits - granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure-function relationships, we juxtacellularly recorded and labeled single GCs in freely-moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population.

Article and author information

Author details

  1. Maria Diamantaki

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Markus Frey

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Berens

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-4727
  4. Patricia Preston-Ferrer

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    For correspondence
    patricia.preston@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Burgalossi

    Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
    For correspondence
    andrea.burgalossi@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0039-3599

Funding

Deutsche Forschungsgemeinschaft (EXC 307)

  • Maria Diamantaki
  • Markus Frey
  • Philipp Berens
  • Patricia Preston-Ferrer
  • Andrea Burgalossi

Bundesministerium für Bildung und Forschung (FKZ 01GQ1601)

  • Philipp Berens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed according to the German guidelines on animal welfare and approved by the local institution in charge of experiments using animals (Regierungspraesidium Tuebingen, permit numbers CIN2/14, CIN/5/14 and CIN/814).

Copyright

© 2016, Diamantaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,739
    views
  • 784
    downloads
  • 143
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Diamantaki
  2. Markus Frey
  3. Philipp Berens
  4. Patricia Preston-Ferrer
  5. Andrea Burgalossi
(2016)
Sparse activity of identified dentate granule cells during spatial exploration
eLife 5:e20252.
https://doi.org/10.7554/eLife.20252

Share this article

https://doi.org/10.7554/eLife.20252

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.