An aging-independent replicative lifespan in a symmetrically dividing eukaryote

  1. Eric C Spivey
  2. Stephen K Jones
  3. James R Rybarski
  4. Fatema A Saifuddin
  5. Ilya J Finkelstein  Is a corresponding author
  1. The University of Texas at Austin, United States

Abstract

The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.

Data availability

The following previously published data sets were used
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329670.1).
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329671.1).
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329672.1).

Article and author information

Author details

  1. Eric C Spivey

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4080-8616
  2. Stephen K Jones

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James R Rybarski

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fatema A Saifuddin

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilya J Finkelstein

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    ifinkelstein@cm.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9371-2431

Funding

American Federation for Aging Research (AFAR-020)

  • Eric C Spivey
  • Stephen K Jones
  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

National Institute on Aging (F32 AG053051)

  • Stephen K Jones

Cancer Prevention and Research Institute of Texas (R1214)

  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

Welch Foundation (F-l808)

  • Eric C Spivey
  • Stephen K Jones
  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Spivey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,481
    views
  • 734
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric C Spivey
  2. Stephen K Jones
  3. James R Rybarski
  4. Fatema A Saifuddin
  5. Ilya J Finkelstein
(2017)
An aging-independent replicative lifespan in a symmetrically dividing eukaryote
eLife 6:e20340.
https://doi.org/10.7554/eLife.20340

Share this article

https://doi.org/10.7554/eLife.20340

Further reading

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.