An aging-independent replicative lifespan in a symmetrically dividing eukaryote
Abstract
The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
Data availability
-
The genome sequence of Schizosaccharomyces pombePublicly available at the NCBI Nucleotide (sccession no: CU329670.1).
-
The genome sequence of Schizosaccharomyces pombePublicly available at the NCBI Nucleotide (sccession no: CU329671.1).
-
The genome sequence of Schizosaccharomyces pombePublicly available at the NCBI Nucleotide (sccession no: CU329672.1).
Article and author information
Author details
Funding
American Federation for Aging Research (AFAR-020)
- Eric C Spivey
- Stephen K Jones
- James R Rybarski
- Fatema A Saifuddin
- Ilya J Finkelstein
National Institute on Aging (F32 AG053051)
- Stephen K Jones
Cancer Prevention and Research Institute of Texas (R1214)
- James R Rybarski
- Fatema A Saifuddin
- Ilya J Finkelstein
Welch Foundation (F-l808)
- Eric C Spivey
- Stephen K Jones
- James R Rybarski
- Fatema A Saifuddin
- Ilya J Finkelstein
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Spivey et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,567
- views
-
- 764
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
-
- Cell Biology
- Developmental Biology
A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.