An aging-independent replicative lifespan in a symmetrically dividing eukaryote

  1. Eric C Spivey
  2. Stephen K Jones
  3. James R Rybarski
  4. Fatema A Saifuddin
  5. Ilya J Finkelstein  Is a corresponding author
  1. The University of Texas at Austin, United States

Abstract

The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.

Data availability

The following previously published data sets were used
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329670.1).
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329671.1).
    1. Wood et al.
    (2002) The genome sequence of Schizosaccharomyces pombe
    Publicly available at the NCBI Nucleotide (sccession no: CU329672.1).

Article and author information

Author details

  1. Eric C Spivey

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4080-8616
  2. Stephen K Jones

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James R Rybarski

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fatema A Saifuddin

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilya J Finkelstein

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    For correspondence
    ifinkelstein@cm.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9371-2431

Funding

American Federation for Aging Research (AFAR-020)

  • Eric C Spivey
  • Stephen K Jones
  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

National Institute on Aging (F32 AG053051)

  • Stephen K Jones

Cancer Prevention and Research Institute of Texas (R1214)

  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

Welch Foundation (F-l808)

  • Eric C Spivey
  • Stephen K Jones
  • James R Rybarski
  • Fatema A Saifuddin
  • Ilya J Finkelstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Spivey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,559
    views
  • 763
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric C Spivey
  2. Stephen K Jones
  3. James R Rybarski
  4. Fatema A Saifuddin
  5. Ilya J Finkelstein
(2017)
An aging-independent replicative lifespan in a symmetrically dividing eukaryote
eLife 6:e20340.
https://doi.org/10.7554/eLife.20340

Share this article

https://doi.org/10.7554/eLife.20340

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.