An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum

  1. Ali S Hamodi
  2. Zhenyu Liu
  3. Kara G Pratt  Is a corresponding author
  1. University of Wyoming, United States
  2. University of Wyomin, United States

Abstract

In the vertebrate CNS, afferent sensory inputs are targeted to specific depths or layers of their target neuropil. This patterning exists ab initio, from the very beginning, and therefore has been considered an activity-independent process. However, here we report that, during circuit development, the subcellular segregation of the visual and mechanosensory inputs to specific regions of tectal neuron dendrites in the tadpole optic tectum requires NMDA receptor activity. Blocking NMDARs during the formation of these sensory circuits, or removing the visual set of inputs, leads to less defined segregation, and suggests a correlation-based mechanism in which correlated inputs wire to common regions of dendrites. This can account for how two sets of inputs form synapses onto different regions of the same dendrite. Blocking NMDA receptors during later stages of circuit development did not disrupt segregation, indicating a critical period for activity-dependent shaping of patterns of innervation.

Article and author information

Author details

  1. Ali S Hamodi

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhenyu Liu

    Department of Zoology and Physiology, University of Wyomin, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kara G Pratt

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    For correspondence
    Kpratt4@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6743-4757

Funding

Office of Experimental Program to Stimulate Competitive Research ((Outside the Box) Grant number 4201-11951-1001498 G)

  • Zhenyu Liu
  • Kara G Pratt

National Institute of General Medical Sciences (P30-GM-32128)

  • Ali S Hamodi
  • Zhenyu Liu
  • Kara G Pratt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: All experimental protocols have been approved by the University of Wyoming's Institutional Animal Care and Use Committee (IACUC). The protocol (# 20140411KP00089-03) was approved 04/11/16 to 04/10/17.

Version history

  1. Received: August 9, 2016
  2. Accepted: November 22, 2016
  3. Accepted Manuscript published: November 23, 2016 (version 1)
  4. Version of Record published: December 2, 2016 (version 2)

Copyright

© 2016, Hamodi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 874
    views
  • 197
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali S Hamodi
  2. Zhenyu Liu
  3. Kara G Pratt
(2016)
An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum
eLife 5:e20502.
https://doi.org/10.7554/eLife.20502

Share this article

https://doi.org/10.7554/eLife.20502

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.