An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum
Abstract
In the vertebrate CNS, afferent sensory inputs are targeted to specific depths or layers of their target neuropil. This patterning exists ab initio, from the very beginning, and therefore has been considered an activity-independent process. However, here we report that, during circuit development, the subcellular segregation of the visual and mechanosensory inputs to specific regions of tectal neuron dendrites in the tadpole optic tectum requires NMDA receptor activity. Blocking NMDARs during the formation of these sensory circuits, or removing the visual set of inputs, leads to less defined segregation, and suggests a correlation-based mechanism in which correlated inputs wire to common regions of dendrites. This can account for how two sets of inputs form synapses onto different regions of the same dendrite. Blocking NMDA receptors during later stages of circuit development did not disrupt segregation, indicating a critical period for activity-dependent shaping of patterns of innervation.
Article and author information
Author details
Funding
Office of Experimental Program to Stimulate Competitive Research ((Outside the Box) Grant number 4201-11951-1001498 G)
- Zhenyu Liu
- Kara G Pratt
National Institute of General Medical Sciences (P30-GM-32128)
- Ali S Hamodi
- Zhenyu Liu
- Kara G Pratt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental protocols have been approved by the University of Wyoming's Institutional Animal Care and Use Committee (IACUC). The protocol (# 20140411KP00089-03) was approved 04/11/16 to 04/10/17.
Copyright
© 2016, Hamodi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 929
- views
-
- 198
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 11
- citations for umbrella DOI https://doi.org/10.7554/eLife.20502