An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum

  1. Ali S Hamodi
  2. Zhenyu Liu
  3. Kara G Pratt  Is a corresponding author
  1. University of Wyoming, United States
  2. University of Wyomin, United States

Abstract

In the vertebrate CNS, afferent sensory inputs are targeted to specific depths or layers of their target neuropil. This patterning exists ab initio, from the very beginning, and therefore has been considered an activity-independent process. However, here we report that, during circuit development, the subcellular segregation of the visual and mechanosensory inputs to specific regions of tectal neuron dendrites in the tadpole optic tectum requires NMDA receptor activity. Blocking NMDARs during the formation of these sensory circuits, or removing the visual set of inputs, leads to less defined segregation, and suggests a correlation-based mechanism in which correlated inputs wire to common regions of dendrites. This can account for how two sets of inputs form synapses onto different regions of the same dendrite. Blocking NMDA receptors during later stages of circuit development did not disrupt segregation, indicating a critical period for activity-dependent shaping of patterns of innervation.

Article and author information

Author details

  1. Ali S Hamodi

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhenyu Liu

    Department of Zoology and Physiology, University of Wyomin, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kara G Pratt

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    For correspondence
    Kpratt4@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6743-4757

Funding

Office of Experimental Program to Stimulate Competitive Research ((Outside the Box) Grant number 4201-11951-1001498 G)

  • Zhenyu Liu
  • Kara G Pratt

National Institute of General Medical Sciences (P30-GM-32128)

  • Ali S Hamodi
  • Zhenyu Liu
  • Kara G Pratt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols have been approved by the University of Wyoming's Institutional Animal Care and Use Committee (IACUC). The protocol (# 20140411KP00089-03) was approved 04/11/16 to 04/10/17.

Copyright

© 2016, Hamodi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 907
    views
  • 198
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali S Hamodi
  2. Zhenyu Liu
  3. Kara G Pratt
(2016)
An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum
eLife 5:e20502.
https://doi.org/10.7554/eLife.20502

Share this article

https://doi.org/10.7554/eLife.20502

Further reading

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.