Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish

  1. Elin Sorhus  Is a corresponding author
  2. John Patrick Incardona
  3. Tomasz Furmanek
  4. Giles W Goetz
  5. Nathaniel L Scholz
  6. Sonnich Meier
  7. Rolf Brudvik Edvardsen
  8. Sissel Jentoft
  1. Institute of Marine Research, Norway
  2. Northwest Fisheries Science Center, United States
  3. University of Oslo, Norway

Abstract

Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in 1) cardiac form and function, 2) craniofacial development, 3) ionoregulation and fluid balance, and 4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.

Data availability

The following data sets were generated
    1. Soerhus E
    2. Incardona J
    3. Scholz N
    4. Furmanek
    5. Meier S
    6. Edvardsen R
    7. Jentoft S
    (2016) Sequence data
    Publicly available at the NCBI Sequence Read Archive (accession no: PRJNA287744).

Article and author information

Author details

  1. Elin Sorhus

    Institute of Marine Research, Bergen, Norway
    For correspondence
    elin.sorhus@imr.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3542-4201
  2. John Patrick Incardona

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomasz Furmanek

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Giles W Goetz

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nathaniel L Scholz

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sonnich Meier

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Rolf Brudvik Edvardsen

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Sissel Jentoft

    Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.

Funding

Research Council of Norway (Project no. 234367)

  • Elin Sorhus
  • John Patrick Incardona
  • Tomasz Furmanek
  • Nathaniel L Scholz
  • Sonnich Meier
  • Rolf Brudvik Edvardsen

VISTA foundation (Project no. 6161)

  • Elin Sorhus

Institute of Marine Research (Project no. 14236)

  • Elin Sorhus
  • Tomasz Furmanek
  • Sonnich Meier
  • Rolf Brudvik Edvardsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments within the study were approved by NARA, the governmental Norwegian Animal Research Authority (http://www.fdu.no/fdu/, reference number 2012/275334-2). All methods were performed in accordance with approved guidelines.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,835
    views
  • 305
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elin Sorhus
  2. John Patrick Incardona
  3. Tomasz Furmanek
  4. Giles W Goetz
  5. Nathaniel L Scholz
  6. Sonnich Meier
  7. Rolf Brudvik Edvardsen
  8. Sissel Jentoft
(2017)
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
eLife 6:e20707.
https://doi.org/10.7554/eLife.20707

Share this article

https://doi.org/10.7554/eLife.20707

Further reading

    1. Ecology
    Astrid Katharina Maria Stubbusch, Johannes M Keegstra ... Glen G D'Souza
    Research Article

    Most of Earth’s biomass is composed of polysaccharides. During biomass decomposition, polysaccharides are degraded by heterotrophic bacteria as a nutrient and energy source and are thereby partly remineralized into CO2. As polysaccharides are heterogeneously distributed in nature, following the colonization and degradation of a polysaccharide hotspot the cells need to reach new polysaccharide hotspots. Even though many studies indicate that these degradation-dispersal cycles contribute to the carbon flow in marine systems, we know little about how cells alternate between polysaccharide degradation and motility, and which environmental factors trigger this behavioral switch. Here, we studied the growth of the marine bacterium Vibrio cyclitrophicus ZF270 on the abundant marine polysaccharide alginate, both in its soluble polymeric form as well as on its breakdown products. We used microfluidics coupled to time-lapse microscopy to analyze motility and growth of individual cells, and RNA sequencing to study associated changes in gene expression. We found that single cells grow at reduced rate on alginate until they form large groups that cooperatively break down the polymer. Exposing cell groups to digested alginate accelerates cell growth and changes the expression of genes involved in alginate degradation and catabolism, central metabolism, ribosomal biosynthesis, and transport. However, exposure to digested alginate also triggers cells to become motile and disperse from cell groups, proportionally increasing with the group size before the nutrient switch, and this is accompanied by high expression of genes involved in flagellar assembly, chemotaxis, and quorum sensing. The motile cells chemotax toward polymeric but not digested alginate, likely enabling them to find new polysaccharide hotspots. Overall, our findings reveal cellular mechanisms that might also underlie bacterial degradation-dispersal cycles, which influence the remineralization of biomass in marine environments.

    1. Ecology
    Viraj R Torsekar, Nevo Sagi ... Dror Hawlena
    Research Article

    Litter decomposition is expected to be positively associated with precipitation despite evidence that decomposers of varying sizes have different moisture dependencies. We hypothesized that higher tolerance of macro-decomposers to aridity may counterbalance the effect of smaller decomposers, leading to similar decomposition rates across climatic gradients. We tested this hypothesis by placing plant litter baskets of different mesh sizes in seven sites along a sharp precipitation gradient, and by characterizing the macro-decomposer assemblages using pitfall trapping. We found that decomposers responded differently to precipitation levels based on their size. Microbial decomposition increased with precipitation in the winter while macro-decomposition peaked in arid sites during the summer. This led to similar overall decomposition rates across the gradient except in hyper-arid sites. Macro-decomposer richness, abundance, and biomass peaked in arid environments. Our findings highlight the importance of macro-decomposition in arid-lands, possibly resolving the dryland decomposition conundrum, and emphasizing the need to contemplate decomposer size when investigating zoogeochemical processes.