Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish

  1. Elin Sorhus  Is a corresponding author
  2. John Patrick Incardona
  3. Tomasz Furmanek
  4. Giles W Goetz
  5. Nathaniel L Scholz
  6. Sonnich Meier
  7. Rolf Brudvik Edvardsen
  8. Sissel Jentoft
  1. Institute of Marine Research, Norway
  2. Northwest Fisheries Science Center, United States
  3. University of Oslo, Norway

Abstract

Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in 1) cardiac form and function, 2) craniofacial development, 3) ionoregulation and fluid balance, and 4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.

Data availability

The following data sets were generated
    1. Soerhus E
    2. Incardona J
    3. Scholz N
    4. Furmanek
    5. Meier S
    6. Edvardsen R
    7. Jentoft S
    (2016) Sequence data
    Publicly available at the NCBI Sequence Read Archive (accession no: PRJNA287744).

Article and author information

Author details

  1. Elin Sorhus

    Institute of Marine Research, Bergen, Norway
    For correspondence
    elin.sorhus@imr.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3542-4201
  2. John Patrick Incardona

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomasz Furmanek

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Giles W Goetz

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nathaniel L Scholz

    Environmental and Fisheries Science Division, Northwest Fisheries Science Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sonnich Meier

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Rolf Brudvik Edvardsen

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Sissel Jentoft

    Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.

Funding

Research Council of Norway (Project no. 234367)

  • Elin Sorhus
  • John Patrick Incardona
  • Tomasz Furmanek
  • Nathaniel L Scholz
  • Sonnich Meier
  • Rolf Brudvik Edvardsen

VISTA foundation (Project no. 6161)

  • Elin Sorhus

Institute of Marine Research (Project no. 14236)

  • Elin Sorhus
  • Tomasz Furmanek
  • Sonnich Meier
  • Rolf Brudvik Edvardsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments within the study were approved by NARA, the governmental Norwegian Animal Research Authority (http://www.fdu.no/fdu/, reference number 2012/275334-2). All methods were performed in accordance with approved guidelines.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,840
    views
  • 305
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elin Sorhus
  2. John Patrick Incardona
  3. Tomasz Furmanek
  4. Giles W Goetz
  5. Nathaniel L Scholz
  6. Sonnich Meier
  7. Rolf Brudvik Edvardsen
  8. Sissel Jentoft
(2017)
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
eLife 6:e20707.
https://doi.org/10.7554/eLife.20707

Share this article

https://doi.org/10.7554/eLife.20707

Further reading

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.