Abstract

Thyroid cancer is common, yet the sequence of alterations that promote tumor formation are incompletely understood. Here we describe a novel model of thyroid carcinoma in zebrafish that reveals temporal changes due to BRAFV600E. Through the use of real-time in vivo imaging we observe disruption in thyroid follicle structure that occurs early in thyroid development. Combinatorial treatment using BRAF and MEK inhibitors reversed the developmental effects induced by BRAFV600E. Adult zebrafish expressing BRAFV600E in thyrocytes developed invasive carcinoma. We identified a gene expression signature from zebrafish thyroid cancer that is predictive of disease free survival in patients with papillary thyroid cancer. Gene expression studies nominated TWIST2 as a key effector downstream of BRAF. Using CRISPR/Cas9 to genetically inactivate a TWIST2 orthologue, we suppressed the effects of BRAFV600E and restored thyroid morphology and hormone synthesis. These data suggest that expression of TWIST2 plays a role in an early step of BRAFV600E-mediated transformation.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Viviana Anelli

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacques A Villefranc

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sagar Chhangawala

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Raul Martinez-McFaline

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleonora Riva

    Section of Endocrinology, Department of Medical Science, University of Ferrara, Ferrara, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Anvy Nguyen

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Akanksha Verma

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rohan Bareja

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhengming Chen

    Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Theresa Scognamiglio

    Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Olivier Elemento

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yariv Houvras

    Department of Surgery, Weill Cornell Medical College, New York, United States
    For correspondence
    yah9014@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0751-3215

Funding

National Institutes of Health (R21CA20254001)

  • Yariv Houvras

National Institutes of Health (T32GM007739)

  • Raul Martinez-McFaline

National Institutes of Health (P50-CA172012)

  • Jacques A Villefranc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Green, Howard Hughes Medical Institute, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2011-0026) of Weill Cornell Medical College.

Version history

  1. Received: August 16, 2016
  2. Accepted: March 15, 2017
  3. Accepted Manuscript published: March 28, 2017 (version 1)
  4. Version of Record published: April 12, 2017 (version 2)

Copyright

© 2017, Anelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,185
    views
  • 436
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viviana Anelli
  2. Jacques A Villefranc
  3. Sagar Chhangawala
  4. Raul Martinez-McFaline
  5. Eleonora Riva
  6. Anvy Nguyen
  7. Akanksha Verma
  8. Rohan Bareja
  9. Zhengming Chen
  10. Theresa Scognamiglio
  11. Olivier Elemento
  12. Yariv Houvras
(2017)
Oncogenic BRAF disrupts thyroid morphogenesis and function via Twist expression
eLife 6:e20728.
https://doi.org/10.7554/eLife.20728

Share this article

https://doi.org/10.7554/eLife.20728

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.