Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

  1. Julieta E Lischinsky
  2. Katie Sokolowski
  3. Li Peijun
  4. Shigeyuki Esumi
  5. Yasmin Kamal
  6. Meredith Goodrich
  7. Livio Oboti
  8. Timothy R Hammond
  9. Meera Krishnamoorthy
  10. Daniel Feldman
  11. Molly Huntsman
  12. Judy Liu
  13. Joshua G Corbin  Is a corresponding author
  1. The George Washington University, United States
  2. Children's National Medical Center, United States
  3. University of Colorado School of Medicine, Aurora, United States

Abstract

The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.

Article and author information

Author details

  1. Julieta E Lischinsky

    Institute for Biomedical Sciences, The George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1664-6642
  2. Katie Sokolowski

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Li Peijun

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shigeyuki Esumi

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasmin Kamal

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Meredith Goodrich

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Livio Oboti

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Timothy R Hammond

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meera Krishnamoorthy

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Feldman

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Molly Huntsman

    Department of Pediatrics, University of Colorado School of Medicine, Aurora, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Judy Liu

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Joshua G Corbin

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    For correspondence
    JCorbin@cnmcresearch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0122-4324

Funding

National Institute on Drug Abuse (R01 NIDA020140)

  • Joshua G Corbin

Intellectual and Developmental Disabilities Research Center (IDDRC P30HD040677)

  • Joshua G Corbin

National Institute on Deafness and Other Communication Disorders (R01 DC012050)

  • Joshua G Corbin

National Institute on Drug Abuse (F32 DA035754)

  • Katie Sokolowski

Goldwin Foundation Grant for Pediatric Epilepsy

  • Judy Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All animal procedures were approved by the Children's National Medical Center's Institutional Animal Care (Animal Welfare Assurance Number: A3338-01) and Use Committee (IACUC) protocols (#00030435) and conformed to NIH Guidelines for animal use. All surgery was performed under ketamine/xylazine cocktail anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: August 26, 2016
  2. Accepted: February 26, 2017
  3. Accepted Manuscript published: February 28, 2017 (version 1)
  4. Accepted Manuscript updated: March 13, 2017 (version 2)
  5. Version of Record published: April 7, 2017 (version 3)

Copyright

© 2017, Lischinsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,068
    views
  • 576
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julieta E Lischinsky
  2. Katie Sokolowski
  3. Li Peijun
  4. Shigeyuki Esumi
  5. Yasmin Kamal
  6. Meredith Goodrich
  7. Livio Oboti
  8. Timothy R Hammond
  9. Meera Krishnamoorthy
  10. Daniel Feldman
  11. Molly Huntsman
  12. Judy Liu
  13. Joshua G Corbin
(2017)
Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues
eLife 6:e21012.
https://doi.org/10.7554/eLife.21012

Share this article

https://doi.org/10.7554/eLife.21012

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.