1. Neuroscience
Download icon

Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

  1. Julieta E Lischinsky
  2. Katie Sokolowski
  3. Li Peijun
  4. Shigeyuki Esumi
  5. Yasmin Kamal
  6. Meredith Goodrich
  7. Livio Oboti
  8. Timothy R Hammond
  9. Meera Krishnamoorthy
  10. Daniel Feldman
  11. Molly Huntsman
  12. Judy Liu
  13. Joshua G Corbin  Is a corresponding author
  1. The George Washington University, United States
  2. Children's National Medical Center, United States
  3. University of Colorado School of Medicine, Aurora, United States
Research Article
  • Cited 16
  • Views 2,346
  • Annotations
Cite this article as: eLife 2017;6:e21012 doi: 10.7554/eLife.21012

Abstract

The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.

Article and author information

Author details

  1. Julieta E Lischinsky

    Institute for Biomedical Sciences, The George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1664-6642
  2. Katie Sokolowski

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Li Peijun

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shigeyuki Esumi

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasmin Kamal

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Meredith Goodrich

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Livio Oboti

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Timothy R Hammond

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meera Krishnamoorthy

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Feldman

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Molly Huntsman

    Department of Pediatrics, University of Colorado School of Medicine, Aurora, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Judy Liu

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Joshua G Corbin

    Center for Neuroscience Research, Children's National Medical Center, Washington DC, United States
    For correspondence
    JCorbin@cnmcresearch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0122-4324

Funding

National Institute on Drug Abuse (R01 NIDA020140)

  • Joshua G Corbin

Intellectual and Developmental Disabilities Research Center (IDDRC P30HD040677)

  • Joshua G Corbin

National Institute on Deafness and Other Communication Disorders (R01 DC012050)

  • Joshua G Corbin

National Institute on Drug Abuse (F32 DA035754)

  • Katie Sokolowski

Goldwin Foundation Grant for Pediatric Epilepsy

  • Judy Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Children's National Medical Center's Institutional Animal Care (Animal Welfare Assurance Number: A3338-01) and Use Committee (IACUC) protocols (#00030435) and conformed to NIH Guidelines for animal use. All surgery was performed under ketamine/xylazine cocktail anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: August 26, 2016
  2. Accepted: February 26, 2017
  3. Accepted Manuscript published: February 28, 2017 (version 1)
  4. Accepted Manuscript updated: March 13, 2017 (version 2)
  5. Version of Record published: April 7, 2017 (version 3)

Copyright

© 2017, Lischinsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,346
    Page views
  • 488
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.