Abstract

Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors required for production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during S. mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.

Article and author information

Author details

  1. Erin L Davies

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  2. Kai Lei

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Christopher W Seidel

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Amanda E Kroesen

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Sean A McKinney

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  6. Longhua Guo

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  7. Sofia MC Robb

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  8. Eric J Ross

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  9. Kirsten Gotting

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  10. Alejandro Sánchez Alvarado

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    asa@stowers.org
    Competing interests
    Alejandro Sánchez Alvarado, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1966-6959

Funding

National Institute of General Medical Sciences (R37GM057260-17)

  • Alejandro Sánchez Alvarado

Howard Hughes Medical Institute

  • Kai Lei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Davies et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,580
    views
  • 1,333
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin L Davies
  2. Kai Lei
  3. Christopher W Seidel
  4. Amanda E Kroesen
  5. Sean A McKinney
  6. Longhua Guo
  7. Sofia MC Robb
  8. Eric J Ross
  9. Kirsten Gotting
  10. Alejandro Sánchez Alvarado
(2017)
Embryonic origin of adult stem cells required for tissue homeostasis and regeneration
eLife 6:e21052.
https://doi.org/10.7554/eLife.21052

Share this article

https://doi.org/10.7554/eLife.21052

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.