Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition

Abstract

Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.

Article and author information

Author details

  1. Mei Yuan

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Thomas Meyer

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  3. Christoph Benkowitz

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  4. Shakuntala Savanthrapadian

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Laura Ansel-Bollepalli

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  6. Angelica Foggetti

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  7. Peer Wulff

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Pepe Alcami

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  9. Claudio Elgueta

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  10. Marlene Bartos

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    For correspondence
    marlene.bartos@physiologie.uni-freiburg.de
    Competing interests
    Marlene Bartos, Reviewing editor, elife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9741-1946

Funding

Deutsche Forschungsgemeinschaft (FOR2143)

  • Marlene Bartos

Volkswagen Foundation (Lichtenberg Award)

  • Marlene Bartos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance to national and european legislations (license no.: G-11/53; X-12/20D).

Copyright

© 2017, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,827
    views
  • 982
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Yuan
  2. Thomas Meyer
  3. Christoph Benkowitz
  4. Shakuntala Savanthrapadian
  5. Laura Ansel-Bollepalli
  6. Angelica Foggetti
  7. Peer Wulff
  8. Pepe Alcami
  9. Claudio Elgueta
  10. Marlene Bartos
(2017)
Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition
eLife 6:e21105.
https://doi.org/10.7554/eLife.21105

Share this article

https://doi.org/10.7554/eLife.21105

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.