Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition

Abstract

Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.

Article and author information

Author details

  1. Mei Yuan

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Thomas Meyer

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  3. Christoph Benkowitz

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  4. Shakuntala Savanthrapadian

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Laura Ansel-Bollepalli

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  6. Angelica Foggetti

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  7. Peer Wulff

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Pepe Alcami

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  9. Claudio Elgueta

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  10. Marlene Bartos

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    For correspondence
    marlene.bartos@physiologie.uni-freiburg.de
    Competing interests
    Marlene Bartos, Reviewing editor, elife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9741-1946

Funding

Deutsche Forschungsgemeinschaft (FOR2143)

  • Marlene Bartos

Volkswagen Foundation (Lichtenberg Award)

  • Marlene Bartos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance to national and european legislations (license no.: G-11/53; X-12/20D).

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: August 31, 2016
  2. Accepted: April 1, 2017
  3. Accepted Manuscript published: April 3, 2017 (version 1)
  4. Version of Record published: April 18, 2017 (version 2)

Copyright

© 2017, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,164
    Page views
  • 914
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Yuan
  2. Thomas Meyer
  3. Christoph Benkowitz
  4. Shakuntala Savanthrapadian
  5. Laura Ansel-Bollepalli
  6. Angelica Foggetti
  7. Peer Wulff
  8. Pepe Alcami
  9. Claudio Elgueta
  10. Marlene Bartos
(2017)
Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition
eLife 6:e21105.
https://doi.org/10.7554/eLife.21105

Further reading

    1. Neuroscience
    Geoffrey W Meissner, Aljoscha Nern ... FlyLight Project Team
    Tools and Resources Updated

    Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.

    1. Computational and Systems Biology
    2. Neuroscience
    Rebecca Elizabeth Carlisle, Arthur D Kuo
    Research Article Updated

    Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (N=10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.