Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition

Abstract

Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.

Article and author information

Author details

  1. Mei Yuan

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Thomas Meyer

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  3. Christoph Benkowitz

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  4. Shakuntala Savanthrapadian

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Laura Ansel-Bollepalli

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  6. Angelica Foggetti

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  7. Peer Wulff

    Institute for Physiology, University of Kiel, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Pepe Alcami

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  9. Claudio Elgueta

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  10. Marlene Bartos

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    For correspondence
    marlene.bartos@physiologie.uni-freiburg.de
    Competing interests
    Marlene Bartos, Reviewing editor, elife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9741-1946

Funding

Deutsche Forschungsgemeinschaft (FOR2143)

  • Marlene Bartos

Volkswagen Foundation (Lichtenberg Award)

  • Marlene Bartos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance to national and european legislations (license no.: G-11/53; X-12/20D).

Copyright

© 2017, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,005
    views
  • 1,007
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Yuan
  2. Thomas Meyer
  3. Christoph Benkowitz
  4. Shakuntala Savanthrapadian
  5. Laura Ansel-Bollepalli
  6. Angelica Foggetti
  7. Peer Wulff
  8. Pepe Alcami
  9. Claudio Elgueta
  10. Marlene Bartos
(2017)
Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition
eLife 6:e21105.
https://doi.org/10.7554/eLife.21105

Share this article

https://doi.org/10.7554/eLife.21105

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.