Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition

  1. Kevin M Collins  Is a corresponding author
  2. Addys Bode
  3. Robert W Fernandez
  4. Jessica E Tanis
  5. Jacob C Brewer
  6. Matthew S Creamer
  7. Michael R Koelle
  1. University of Miami, United States
  2. Yale University, United States
7 figures, 6 videos and 1 table

Figures

Cell-specific reporters of activity in the C.elegans egg-laying behavior circuit.

(A) Schematic of the circuit. HSN (green) and VC (blue) motor neurons synapse onto the vm2 muscle postsynaptic termini (center of schematic). The uv1 neuroendocrine cells (pink) extend processes …

https://doi.org/10.7554/eLife.21126.003
Figure 2 with 1 supplement
HSN, VC, and vulval muscle activity is rhythmic and phased with animal locomotion.

(A) Active-state segments, such as the one shown here, were extracted from Ca2+ recordings, and analyzed for rhythmicity by power spectrum analysis. Underlying rhythm frequencies and peak …

https://doi.org/10.7554/eLife.21126.007
Figure 2—figure supplement 1
Relative timing of HSN, VC, and vulval muscle Ca2+ transients during locomotion body bends.

The position of the vulva within a sinusoidal locomotor body bend was used to assign a body bend ‘phase’, in units of degrees, for each Ca2+ transient analyzed in Figure 1 as described in the …

https://doi.org/10.7554/eLife.21126.008
Optogenetic activation of HSN neurons initiates the egg-laying active state, and optogenetic activation of VC neurons slows locomotion.

(A) Animals expressing Channelrhodopsin-2 (ChR2) in the HSNs and GCaMP5/mCherry in the VC neurons were grown in the presence (+ATR; top, blue) or absence (–ATR; bottom, black) of all-trans retinal. …

https://doi.org/10.7554/eLife.21126.010
Figure 4 with 1 supplement
Active states require egg production but not the HSNs.

(A) Vulval muscle activity in wild-type animals either untreated or after sterilization with floxuridine (FUDR). Left panel shows 30 min recordings with the grey underlined regions expanded at …

https://doi.org/10.7554/eLife.21126.013
Figure 4—figure supplement 1
Persistent phasing of rhythmic vulval muscle activity in animals lacking HSNs and after sterilization.

Phasing of vulval muscle Ca2+ transients during twitching (closed circles) and egg laying (open circles) in five untreated wild-type animals (A) and five animals sterilized with FUDR (B). Bar and …

https://doi.org/10.7554/eLife.21126.014
The tyraminergic uv1 neuroendocrine cells are mechanically deformed and activated by egg laying.

(A) Fluorescence micrographs of uv1 showing GCaMP5, mCherry, and the GCaMP5/mCherry ratio before egg laying, during egg passage through the vulva, and after egg release. Times of movie frames in …

https://doi.org/10.7554/eLife.21126.015
Tyramine inhibits egg laying, in part, through LGC-55 receptors on the HSNs.

(A) Exogenous tyramine inhibits egg-laying behavior and requires the LGC-55 receptor. Scatter plots and means showing the average number of eggs laid after 30 min by wild type (grey), tdc-1(n3419) …

https://doi.org/10.7554/eLife.21126.016
Working model of how circuit connectivity, signaling, and activity contribute to the observed rhythms that accompany the active and inactive egg-laying behavior states.

VA and VB motor neuron synapses release acetylcholine (ACh) that rhythmically excites the body wall muscles (bwm) and vm1 vulval muscles during each locomotion body bend, every ~10 s. Eggs are …

https://doi.org/10.7554/eLife.21126.017

Videos

Video 1
Ratio recording of HSN Ca2+ transients during the egg-laying active state.

High Ca2+ is indicated in red while low calcium is in blue. Large panel is an expanded view showing the freely-moving animal that has been contrast enhanced to make the worm and its laid eggs …

https://doi.org/10.7554/eLife.21126.004
Video 2
Ratio recording of VC Ca2+ transients during the egg-laying active state.

High Ca2+ is indicated in red while low calcium is in blue. Contrast is enhanced to make the worm visible, although the laid eggs are not easily visible. Text labels indicate when vulval muscle (vm) …

https://doi.org/10.7554/eLife.21126.005
Video 3
Ratio recording of vulval muscle Ca2+ transients during the egg-laying active state.

High Ca2+ is indicated in red while low calcium is in blue. Large panel is an expanded view showing the freely-moving animal that has been contrast enhanced to make the worm and its laid eggs …

https://doi.org/10.7554/eLife.21126.006
Video 4
Activation of the HSNs using Channelrhodopsin-2 induces the egg-laying active state.

Animals were recorded for a total of 90 s with continuous blue light stimulation beginning at 30 s and ending at 60 s, during which five eggs are laid. Recording is sped up three-fold.

https://doi.org/10.7554/eLife.21126.009
Video 5
Activation of the VCs using Channelrhodopsin-2 induces animal paralysis and shortening of body length.

Animals were recorded for a total of 90 s with continuous blue light stimulation beginning at 30 s and ending at 60 s. Recording is sped up 3-fold.

https://doi.org/10.7554/eLife.21126.011
Video 6
Ratio recording of uv1 Ca2+ transients during the egg-laying active state.

High Ca2+ is indicated in red while low calcium is in blue. Large panel is an expanded view showing the freely-moving animal. Inset is cropped to a small area containing the uv1s, and stabilized to …

https://doi.org/10.7554/eLife.21126.012

Tables

Table 1

Strains used in this study.

https://doi.org/10.7554/eLife.21126.018

Strain

Feature

Genotype

Figures

LX1832

Strain for transgene production

lite-1(ce314) lin-15(n765ts) X

1–6

LX1836

HSN Channelrhodopsin

wzIs30 IV;lite-1(ce314) lin-15(n765ts) X

3

LX1918

vulval muscle GCaMP5, mCherry

lite-1(ce314) vsIs164 lin-15(n765ts) X

1, 2

LX1932

HSN Channelrhodopsin, vulval muscle GCaMP5, mCherry

wzIs30 IV; lite-1(ce314) vsIs164 lin-15(n765ts) X

3

LX1938

No HSNs, vulval muscle GCaMP5, mCherry

egl-1(n986dm) V; lite-1(ce314) vsIs164 lin-15(n765ts) X

4

LX1986

uv1 GCaMP5, mCherry

vsIs177; lite-1(ce314) lin-15(n765ts) X

5

LX1960

VC GCaMP5, mCherry

vsIs172; lite-1(ce314) lin-15(n765ts) X

1, 2

LX1970

HSN Channelrhodopsin,

VC GCaMP5, mCherry

wzIs30 IV; vsIs172; lite-1(ce314) lin-15(n765ts) X

3

LX2004

HSN GCaMP5, mCherry

lite-1(ce314), vsIs183 lin-15(n765ts) X

1, 2, 6

LX2038

lgc-55 null mutant

HSN GCaMP5, mCherry

lgc-55(tm2913) V

lite-1(ce314) vsIs183 lin-15(n765ts) X

6

MIA3

VC Channelrhodopsin

keyIs3; lite-1(ce314) lin-15(n765ts) X

3

MT13113

tdc-1 null mutant;

no tyramine biosynthesis

tdc-1(n3419) II

6

N2

Bristol strain

wild type

6

OH313

ser-2 null mutant

ser-2(pk1357) X

6

VC125

tyra-3 null mutant

tyra-3(ok325) X

6

QW89

lgc-55 null mutant

lgc-55(tm2913) V

6

LX2096

vulval muscle mCherry

vsIs191; lin-15(n765ts) X

LX2081

pan-neuronal TagRFP

unc-119(ed3) I; otIs356

LX2137

vulval muscle mCherry, lgc-55::gfp

vsIs191; vsEx791

6

LX1330

lgc-55 mutant expressing GFP in HSN from tph-1 promoter

lgc-55(tm2913) V; lin-15(n765ts) X vsEx557

6

LX1329

lgc-55 mutant expressing LGC-55 in HSN from tph-1 promoter

lgc-55(thm2913) V; lin-15(n765ts) X vsEx558

6

Download links