Functional asymmetry and electron flow in the bovine respirasome

  1. Joana S Sousa
  2. Deryck J Mills
  3. Janet Vonck
  4. Werner Kühlbrandt  Is a corresponding author
  1. Max Planck Institute of Biophysics, Germany

Abstract

Respirasomes are macromolecular assemblies of the respiratory chain complexes I, III and IV in the inner mitochondrial membrane. We determined the structure of supercomplex I1III2IV1 from bovine heart mitochondria by cryo-EM at 9 Å resolution. Most protein-protein contacts between complex I, III and IV in the membrane are mediated by supernumerary subunits. Of the two Rieske iron-sulfur cluster domains in the complex III dimer, one is resolved, indicating that this domain is immobile and unable to transfer electrons. The central position of the active complex III monomer between complex I and IV in the respirasome is optimal for accepting reduced quinone from complex I over a short diffusion distance of 11 nm, and delivering reduced cytochrome c to complex IV. The functional asymmetry of complex III provides strong evidence for directed electron flow from complex I to complex IV through the active complex III monomer in the mammalian supercomplex.

Data availability

The following data sets were generated
    1. Sousa JS
    2. Mills DJ
    3. Vonck J
    4. Kuehlbrandt W
    (2016) Cryo-EM map of bovine respirasome
    Publicly available at the EBI Protein Data Bank (accession no: EMD-4107).
    1. Sousa JS
    2. Mills DJ
    3. Vonck J
    4. Kuehlbrandt W
    (2016) Cryo-EM of bovine respirasome
    Publicly available at th EBI Protein Data Bank (accession no: EMD-4108).
    1. Sousa JS
    2. Mills DJ
    3. Vonck J
    4. Kuehlbrandt W
    (2016) Cryo-EM of bovine respirasome
    Publicly available at the EBI Protein Data Bank (accession no: EMD-4109).
    1. Sousa JS
    2. Mills DJ
    3. Vonck J
    4. Kuehlbrandt W
    (2016) cryo-EM of bovine respirasome
    Publicly available at the RCSB Protein Data Bank (accession no: 5LUF).
The following previously published data sets were used
    1. Vinothkumar KR
    2. Zhu J
    3. Hirst J
    (2014) Electron cryo-microscopy of bovine Complex I
    Publicly available at the EBI Protein Data Bank (accession no: EMD-4109).

Article and author information

Author details

  1. Joana S Sousa

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  2. Deryck J Mills

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  3. Janet Vonck

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5659-8863
  4. Werner Kühlbrandt

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    For correspondence
    werner.kuehlbrandt@biophys.mpg.de
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4810

Funding

Max-Planck-Gesellschaft

  • Werner Kühlbrandt

Cluster of Excellence Frankfurt

  • Werner Kühlbrandt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Sousa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,812
    views
  • 627
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.21290

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.