1. Neuroscience
Download icon

Framing of grid cells within and beyond navigation boundaries

  1. Francesco Savelli  Is a corresponding author
  2. JD Luck
  3. James J Knierim  Is a corresponding author
  1. Johns Hopkins University, United States
Research Article
  • Cited 20
  • Views 2,202
  • Annotations
Cite this article as: eLife 2017;6:e21354 doi: 10.7554/eLife.21354

Abstract

Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain's cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes.

Article and author information

Author details

  1. Francesco Savelli

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    fsavelli@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8588-0865
  2. JD Luck

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James J Knierim

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    jknierim@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1796-2930

Funding

National Institute of Neurological Disorders and Stroke (R01 NS039456)

  • James J Knierim

Human Frontier Science Program (LT00683/2006-C)

  • Francesco Savelli

National Institute of Mental Health (R01 MH079511)

  • James J Knierim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and housing procedures followed the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and protocols approved by the Institutional Animal Care and Use Committee at Johns Hopkins University (Protocols RA08A540 and RA11A486).

Reviewing Editor

  1. Upinder S Bhalla, National Centre for Biological Sciences, India

Publication history

  1. Received: September 7, 2016
  2. Accepted: January 11, 2017
  3. Accepted Manuscript published: January 13, 2017 (version 1)
  4. Version of Record published: January 27, 2017 (version 2)

Copyright

© 2017, Savelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,202
    Page views
  • 444
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Anastassios Karagiannis et al.
    Research Article Updated

    Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.

    1. Neuroscience
    Riccardo Caramellino et al.
    Research Advance

    Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.