Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury

  1. Weilin Zhang
  2. He Ren
  3. Chunling Xu
  4. Chongzhuo Zhu
  5. Hao Wu
  6. Dong Liu
  7. Jun Wang
  8. Lei Liu
  9. Wei Li
  10. Qi Ma
  11. Lei Du
  12. Ming Zheng
  13. Chuanmao Zhang
  14. Junling Liu
  15. Quan Chen  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Peking University, China
  3. Shanghai Jiaotong University, China

Abstract

Mitochondrial dysfunction underlies many prevalent diseases including heart disease arising from acute ischemia/reperfusion (I/R) injury. Here, we demonstrate that mitophagy, which selectively removes damaged or unwanted mitochondria, regulated mitochondrial quality and quantity in vivo. Hypoxia induced extensive mitochondrial degradation in a FUNDC1-depenent manner in platelets, and this was blocked by in vivo administration of a cell-penetrating peptide encompassing the LIR motif of FUNDC1 only in wild-type mice. Genetic ablation of Fundc1 impaired mitochondrial quality and increased mitochondrial mass in platelets and rendered the platelets insensitive to hypoxia and the peptide. Moreover, hypoxic mitophagy in platelets protected the heart from worsening of I/R injury. This represents a new mechanism of the hypoxic preconditioning effect which reduces I/R injury. Our results demonstrate a critical role of mitophagy in mitochondrial quality control and platelet activation, and suggest that manipulation of mitophagy by hypoxia or pharmacological approaches may be a novel strategy for cardioprotection.

Article and author information

Author details

  1. Weilin Zhang

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. He Ren

    The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chunling Xu

    Department of Physiology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chongzhuo Zhu

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hao Wu

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Dong Liu

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jun Wang

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lei Liu

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Wei Li

    State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7430-6019
  10. Qi Ma

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Lei Du

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Ming Zheng

    Department of Physiology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Chuanmao Zhang

    The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Junling Liu

    Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Quan Chen

    The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    chenq@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7539-8728

Funding

National Natural Science Foundation of China (31271529)

  • Quan Chen

National Natural Science Foundation of China (81130045)

  • Quan Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Institute of Zoology, Chinese Academy of Sciences. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of the Institute of Zoology, Chinese Academy of Sciences. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Institute of Zoology, Chinese Academy of Sciences (Permit Number:2014-31301130). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,448
    views
  • 1,020
    downloads
  • 163
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weilin Zhang
  2. He Ren
  3. Chunling Xu
  4. Chongzhuo Zhu
  5. Hao Wu
  6. Dong Liu
  7. Jun Wang
  8. Lei Liu
  9. Wei Li
  10. Qi Ma
  11. Lei Du
  12. Ming Zheng
  13. Chuanmao Zhang
  14. Junling Liu
  15. Quan Chen
(2016)
Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury
eLife 5:e21407.
https://doi.org/10.7554/eLife.21407

Share this article

https://doi.org/10.7554/eLife.21407

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.