Loss of Ptpn11 (Shp2) drives satellite cells into quiescence

  1. Joscha Griger
  2. Robin Schneider
  3. Ines Lahmann
  4. Verena Schöwel
  5. Charles Keller
  6. Simone Spuler
  7. Marc Nazaré
  8. Carmen Birchmeier  Is a corresponding author
  1. Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Germany
  2. Charité, Germany
  3. Children's Cancer Therapy Development Institute, United States
  4. Leibniz Institute for Molecular Pharmacology, Germany

Abstract

The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Joscha Griger

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin Schneider

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ines Lahmann

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Verena Schöwel

    Muscle Research Unit, Experimental and Clinical Research Center, Charité, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles Keller

    Children's Cancer Therapy Development Institute, Beaverton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Simone Spuler

    Muscle Research Unit, Experimental and Clinical Research Center, Charité, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0155-1117
  7. Marc Nazaré

    Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Birchmeier

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    For correspondence
    cbirch@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-8872

Funding

Deutsche Forschungsgemeinschaft (Graduate student fellowship)

  • Joscha Griger

Deutsche Forschungsgemeinschaft (KFO192)

  • Simone Spuler
  • Carmen Birchmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were carried out in accordance with the guidelines for animal experiments at the Max-Delbrueck-Center (MDC), which conform to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996), the European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals. Animal experimentation was approved by the local Ethics committee for animal experiments at the Landesamt fÃ1/4r Gesundheit und Soziales (GO130/13; G0028/14). The animal house at the MDC is registered according to paragraph11 German Animal Welfare Law.

Copyright

© 2017, Griger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,928
    views
  • 466
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joscha Griger
  2. Robin Schneider
  3. Ines Lahmann
  4. Verena Schöwel
  5. Charles Keller
  6. Simone Spuler
  7. Marc Nazaré
  8. Carmen Birchmeier
(2017)
Loss of Ptpn11 (Shp2) drives satellite cells into quiescence
eLife 6:e21552.
https://doi.org/10.7554/eLife.21552

Share this article

https://doi.org/10.7554/eLife.21552

Further reading

    1. Cell Biology
    2. Developmental Biology
    Deepak Adhikari, John Carroll
    Insight

    The formation of large endolysosomal structures in unfertilized eggs ensures that lysosomes remain dormant before fertilization, and then shift into clean-up mode after the egg-to-embryo transition.

    1. Developmental Biology
    Yuki Kaneda, Haruhiko Miyata ... Masahito Ikawa
    Research Article

    Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.