Loss of Ptpn11 (Shp2) drives satellite cells into quiescence

  1. Joscha Griger
  2. Robin Schneider
  3. Ines Lahmann
  4. Verena Schöwel
  5. Charles Keller
  6. Simone Spuler
  7. Marc Nazaré
  8. Carmen Birchmeier  Is a corresponding author
  1. Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Germany
  2. Charité, Germany
  3. Children's Cancer Therapy Development Institute, United States
  4. Leibniz Institute for Molecular Pharmacology, Germany

Abstract

The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Joscha Griger

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin Schneider

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ines Lahmann

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Verena Schöwel

    Muscle Research Unit, Experimental and Clinical Research Center, Charité, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles Keller

    Children's Cancer Therapy Development Institute, Beaverton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Simone Spuler

    Muscle Research Unit, Experimental and Clinical Research Center, Charité, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0155-1117
  7. Marc Nazaré

    Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Birchmeier

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    For correspondence
    cbirch@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-8872

Funding

Deutsche Forschungsgemeinschaft (Graduate student fellowship)

  • Joscha Griger

Deutsche Forschungsgemeinschaft (KFO192)

  • Simone Spuler
  • Carmen Birchmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were carried out in accordance with the guidelines for animal experiments at the Max-Delbrueck-Center (MDC), which conform to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996), the European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals. Animal experimentation was approved by the local Ethics committee for animal experiments at the Landesamt fÃ1/4r Gesundheit und Soziales (GO130/13; G0028/14). The animal house at the MDC is registered according to paragraph11 German Animal Welfare Law.

Copyright

© 2017, Griger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,938
    views
  • 466
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joscha Griger
  2. Robin Schneider
  3. Ines Lahmann
  4. Verena Schöwel
  5. Charles Keller
  6. Simone Spuler
  7. Marc Nazaré
  8. Carmen Birchmeier
(2017)
Loss of Ptpn11 (Shp2) drives satellite cells into quiescence
eLife 6:e21552.
https://doi.org/10.7554/eLife.21552

Share this article

https://doi.org/10.7554/eLife.21552

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.