1. Neuroscience
Download icon

Stimulus relevance modulates contrast adaptation in visual cortex

  1. Andreas J Keller  Is a corresponding author
  2. Rachael Houlton
  3. Björn M Kampa
  4. Nicholas A Lesica
  5. Thomas D Mrsic-Flogel
  6. Georg B Keller
  7. Fritjof Helmchen
  1. University of Zurich and ETH Zurich, Switzerland
  2. University College London, United Kingdom
  3. University of Zurich, Switzerland
  4. Friedrich Miescher Institute for Biomedical Research, Switzerland
Short Report
  • Cited 16
  • Views 3,543
  • Annotations
Cite this article as: eLife 2017;6:e21589 doi: 10.7554/eLife.21589

Abstract

A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex.

Article and author information

Author details

  1. Andreas J Keller

    Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
    For correspondence
    andi@ini.ethz.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7997-6118
  2. Rachael Houlton

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Björn M Kampa

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4343-2634
  4. Nicholas A Lesica

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5238-4462
  5. Thomas D Mrsic-Flogel

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    Thomas D Mrsic-Flogel, Reviewing editor, eLife.
  6. Georg B Keller

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1401-0117
  7. Fritjof Helmchen

    Brain Research Institute, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8867-9569

Funding

FP7 EU (Grant 269921)

  • Björn M Kampa
  • Fritjof Helmchen

Novartis Research Foundation

  • Georg B Keller

European Research Council (Grant 616509)

  • Thomas D Mrsic-Flogel

Wellcome Trust (Grant 095074)

  • Thomas D Mrsic-Flogel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and surgical procedures were carried out in accordance with the UK Animal (Scientific Procedures) Act under project license 70/7573, approved by the Cantonal Veterinary Office of Zurich, Switzerland, under license number 62/2011, or by the Cantonal Veterinary Office of Basel-Stadt, Switzerland, under license number 2537.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: September 16, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: January 28, 2017 (version 1)
  4. Version of Record published: February 8, 2017 (version 2)

Copyright

© 2017, Keller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,543
    Page views
  • 795
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Güliz Gürel Özcan et al.
    Research Article
    1. Computational and Systems Biology
    2. Neuroscience
    Michael E Rule et al.
    Short Report