1. Neuroscience
Download icon

Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease

  1. Jeremy F Atherton
  2. Eileen L McIver
  3. Matthew RM Mullen
  4. David L Wokosin
  5. D James Surmeier
  6. Mark D Bevan  Is a corresponding author
  1. Feinberg School of Medicine, Northwestern University, United States
Research Article
  • Cited 10
  • Views 1,517
  • Annotations
Cite this article as: eLife 2016;5:e21616 doi: 10.7554/eLife.21616

Abstract

The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At < 2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or breakdown of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons were lost, as in HD. Together these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course.

Article and author information

Author details

  1. Jeremy F Atherton

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eileen L McIver

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew RM Mullen

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David L Wokosin

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. D James Surmeier

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark D Bevan

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    For correspondence
    m-bevan@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9759-0163

Funding

CHDI Foundation

  • Jeremy F Atherton
  • Mark D Bevan

National Institutes of Health (2R37 NS041280 and 2P50 NS047085)

  • Eileen L McIver
  • David L Wokosin
  • D James Surmeier
  • Mark D Bevan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the policies of the Society for Neuroscience and the National Institutes of Health. All animals were handled according to approved Institutional Animal Care and Use Committee protocols (IS00001185) of Northwestern University. All procedures were performed under isoflurane or ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Publication history

  1. Received: September 17, 2016
  2. Accepted: December 8, 2016
  3. Accepted Manuscript published: December 20, 2016 (version 1)
  4. Version of Record published: December 29, 2016 (version 2)

Copyright

© 2016, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,517
    Page views
  • 354
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Joanne C Gordon et al.
    Research Article Updated
    1. Neuroscience
    Julia Erb et al.
    Research Article